Team 1 - HydroEurope

Uncertainties for runoff & discharge assessment on the Vésubie Catchment

- ADDE Marie-Paule
- ANTONETTI Aurélie
- BOPETTA Vidanalage Yasitha Rangana
- BREHON Mel Thanatcha

- CROCIANELLI Andrés
- GERARDUZZI Kathleen
- MOHAMMED Qadir
- OJO Ayomide Bankole

- PROUDFOOT James
- POCHET Paul
- SHIMIZU Maki

Brandenburgische Technische Universität

Overview

- Defining Uncertainty
- Introduction
 - Vésubie Catchment
 - Storm Alex
- Methodology
- Presentation of Results
 - Impact of DEM/Model Resolution on Hydrographs
 - Impact of Land Use and Soil Conditions on Hydrographs
 - Performance Indicators vs Observed Data
- Summary & Conclusions

Defining Uncertainty

"Uncertainty is a measure of the degree of confidence in the predictions of a hydrological model, and is a reflection of the incomplete knowledge of the real world system, and the inevitable errors in the input data, model structure and parameters." (Gupta et al., 2008)

- Data Uncertainty
 - Lack of Data Difficulties in finding certain data e.g. observed flow Hydrograph
 - Data measurement errors from gauge undercatch and soil moisture recordings
- Structure of the Models used
 - HEC-HMS is a semi-distributed model and thus has limitations
 - Ability to model complexity of catchment versus computational demand
- Parameterization of the Models
 - Empirical hydrological parameters of the basin
 - Thiessen Polygon Method was used on the rainfall data to adopt a characteristic rainfall

Introduction - Vésubie Catchment

- Sub-catchment in the Eastern Region of the Var
- 390 km² in area
- Located 40 km north of Nice
- Soil composition mostly gypsum and granules
- Land use percentages of:
 - 96.0% Forest & Natural Environment
 - 2.5% Urban/Artificial areas
 - 0.8% Farmland
 - 0.7% Wetland

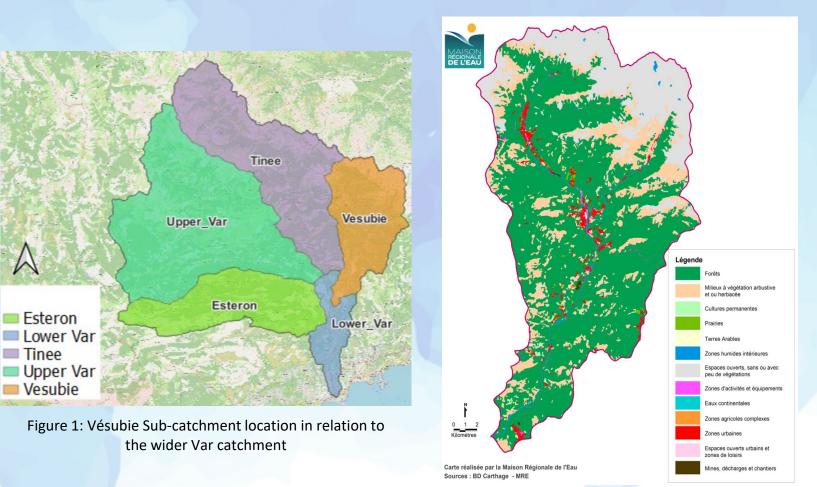



Figure 2: Vésubie Sub-catchment land use types (Maison Régionale de l'Eau)

Introduction - Storm Alex

- Formed over the North Atlantic Ocean from 30 September to 2 October 2020
- Caused a strong Mediterranean episode
- Destroyed Meteo-France Station at Saint-Martin-Vésubie

Evolution of rainfall [mm] in the Vésubie Catchment watershed for Storm Alex using the Thiessen Polygons method

Graph 1: Vésubie Sub-catchment rainfall calculation for Storm Alex event using Thiessen Polygons method

Figure 3a (left): Aerial view of the Vesubie prior to Storm Alex in 2020 & Figure 4b (right): Aerial view shortly after the event - both figures show the recording station at point X

Methodology

- Identification of modelling uncertainties
- Discretization of HEC-HMS models
 - Lumped 1 subcatchment
 - Semi-distributed 3 subcatchments
- Digital Elevation Model resolution
 o 50 m, 75 m, 150 m
- Land use and soil conditions
 O Curve Number from 46 92
- Production of hydrographs
 - Comparison of peak discharge
 - Comparison of total mass balance
- Evaluation of models performance

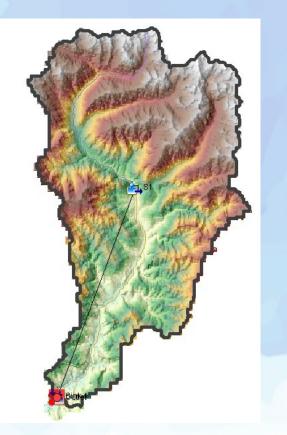
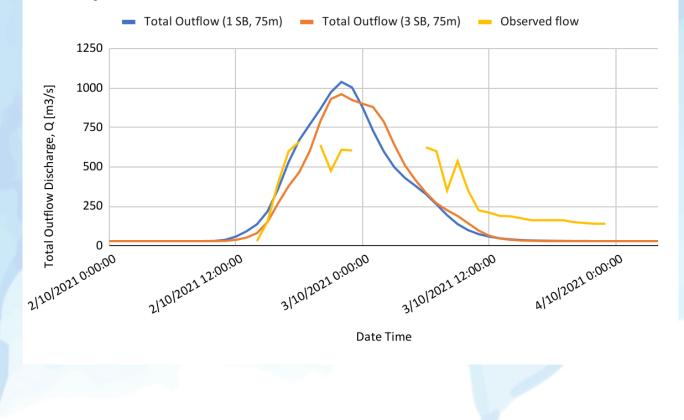
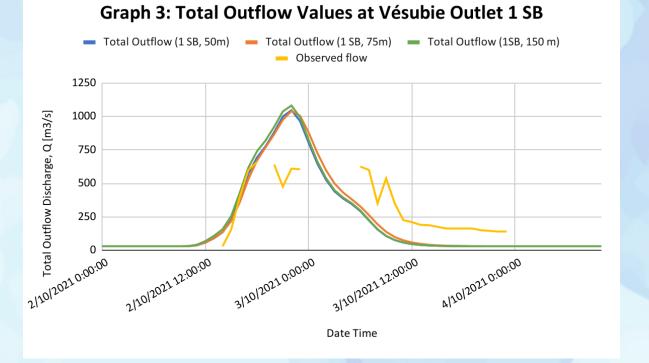
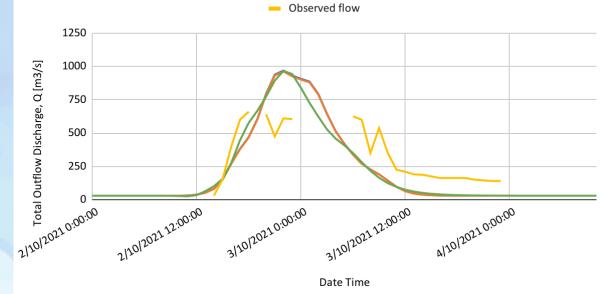



Figure 4: Lumped model -1 Subbasin

Figure 5: Semi-distributed model -3 Subbasins

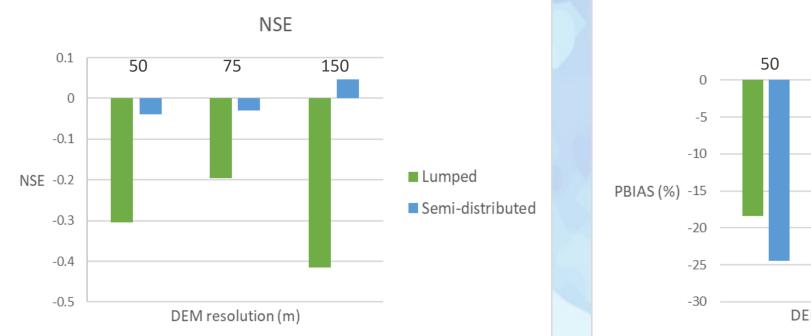

HEC-HMS: Calibration

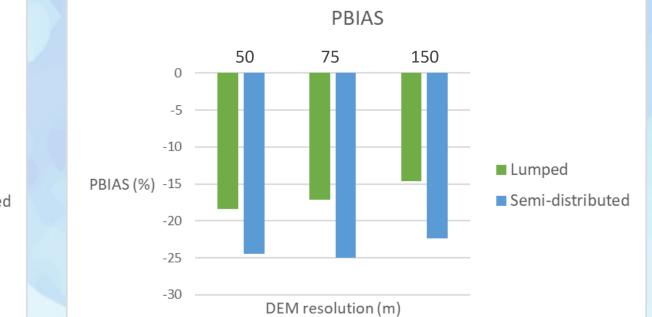
- 75 m DEM
- Full Var catchment to calibrate no data at outlet during 02.10.21 event
- Simulated Hydrograph for 1 subbasin (SB) and 3 sub basins models
- Comparison to modeled outlet discharge values of 650 - 1100 m³/s (Payrastre et al, 2022) and AquaVar model


Graph 2: Calibration for Total Outflow Values at Vésubie Outlet

Impact of DEM/Model Resolution on Hydrographs

Graph 4: Total Outflow Values at Vésubie Outlet 3 SB

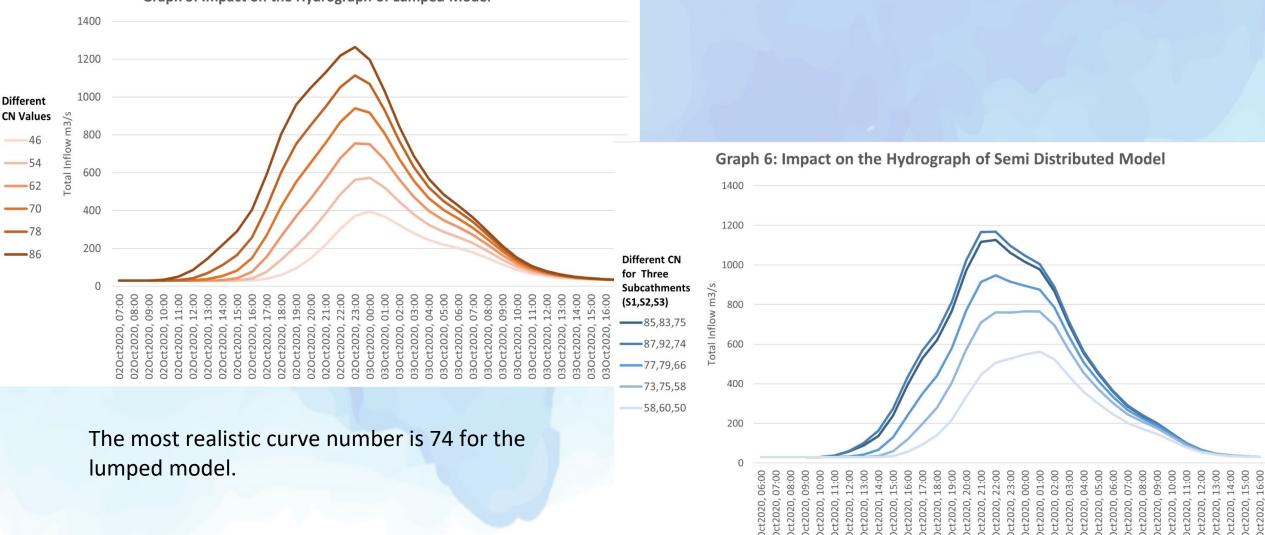

Total Outflow (3 SB, 50) Total Outflow (3 SB, 75m) Total Outflow (3 SB, 150m)



- Depression in peak discharge with increasing resolution
- Very similar output for 50 m and 75 m DEMs
- General decrease in total volume with increase in resolution

	Table 1: Total volume [x10 ³ m ³] calculated at the outlet for the different model runs			
	DEM Resolution	50 m	75 m	150 m
1225	1 SB	43,065.75	44,785.73	44,835.84
	3 SB	43,952.41	43,690.85	42,735.44

Performance Indicators



- Limited availability of observed discharge → Model performance evaluated on half of the simulation period
- DEM resolution
 - High sensitivity for the lumped model Low sensitivity for the semi-distributed model
 - Higher performance of the semi-distributed model

Impact of Land Use and Soil Conditions on Hydrographs

Graph 5: Impact on the Hydrograph of Lumped Model

Summary & Conclusions

- Limited availability of discharge records
 - Hinder evaluation of the model performance
 - Importance of implementing remote monitoring
- Impact of higher DEM resolution
 - Lower total mass balance and peak discharge magnitude
- Impact of higher model resolution Semi-distributed model
 - Transfer of discharge between the sub-catchments \rightarrow Time shift in the hydrograph
 - Complex geometry \rightarrow Flood transported faster downstream the basin
 - Able to reproduce the double-peak shape of the discharge
- Impact of land use and soil conditions Curve number
 - Hydrograph shape Flattening or steepening
 - High sensitivity of runoff and river discharge simulations to Curve Number
- Model calibration at low resolution does not guarantee a physical consistency of the hydrological parameters

Team 1 - HydroEurope

Thank you for your attention

- ADDE Marie-Paule
- ANTONETTI Aurélie
- BOPETTA Vidanalage Yasitha Rangana
- BREHON Mel Thanatcha

- CROCIANELLI Andrés
- GERARDUZZI Kathleen
- MOHAMMED Qadir
- OJO Ayomide Bankole

- PROUDFOOT James
- POCHET Paul
- SHIMIZU Maki

Technische Universität

References

Liu, Y. & Gupta, H.V. (2007) Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework - wiley online library. [Online] [online]. Available from: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006WR005756.

Payrastre, O., Nicolle, P., Bonnifait, L., Brigode, P., Astagneau, P., Baise, A., Belleville, A., Bouamara, N., Bourgin, F., Breil, P. and Brunet, P., (2022) Tempête Alex du 2 octobre 2020 dans les Alpes-Maritimes: une contribution de la communauté scientifique à l'estimation des débits de pointe des crues. LHB, p.2082891.

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (2008). Toward improved calibration of hydrological models: Multiple and noncommensurable measures of information. Water Resources Research, 44(5), W05406. <u>https://doi.org/10.1029/2007WR006716</u>

https://alevelrivers.weebly.com/storm-hydrographs.html. (n.d.). Retrieved February 16, 2023, from https://alevelrivers.weebly.com/storm-hydrographs.html