



### **Tordera Catchment - Gloria Storm: Hydrological and hydraulic analysis**

<u>Team 11:</u> Salomé Mayer, Oscar Cardenas, Orane Chaillou, Thomas Cortesogno, Ali Alperen İşcan, Jongeon Kim (Jay), Mamadou Niang, Jakub Strzelecki, Usman Bala Judith Fernández Stefanie Helfenstein



Vrije

Universiteit





### Nice 17.02.2023





### **Tordera Catchment - Gloria Storm:** Hydrological and hydraulic analysis

The goal of the project is to understand the gloria storm using the La Tordera catchment as an example. The main tasks include:

- Complete hydrological analysis of the catchment for the 2020 Gloria storm event,
- Calibration of the model with observational data,
- Uncertainty analysis of the results. Possible explanations and likely sources of uncertainty,

Vrije Universiteit













## La Tordera catchment



### Figure 1 Location and topography of catchment



















## **Gloria Storm**

Figure 2 Observed rainfall at the different measuring station during the **Gloria Storm** 















# Methods of making a project HEC-HMS

Methods used to implement the project are:

- Loss Method: SCS Curve number, • Transform Method: SCS Unit Hydrograph, Baseflow Method: Recession, • Routing Method: Muskingum,

















## **Two models**



### a) Model with 9 sub-catchments b) Model with 3 sub-catchments





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH





Brandenburgische Technische Universität Cottbus - Senftenberg





POLYTECH° NICE SOPHIA



| ш.                      | adoun    |
|-------------------------|----------|
| 0                       | ntin     |
| $\overline{\mathbf{O}}$ | ageme    |
| $\sim$                  | Is mar   |
|                         | hazaro   |
|                         | related  |
|                         | water    |
| O                       | rces and |
|                         | L RSOU   |
|                         | for wate |
| $\mathbf{>}$            | matics   |
| -                       | droinfo  |
|                         | Hy       |





## **Results before calibration**





-46

÷K





|   | g            |
|---|--------------|
| l | $\Xi$        |
|   |              |
| 1 | ment         |
|   | ŝ            |
|   | Шâл          |
|   | 29105        |
| _ | 25           |
| 1 | C., 2        |
| 1 | 彩.           |
|   | ല            |
|   | Mater        |
|   | ŝ            |
|   | g            |
|   | Ī            |
|   | water        |
|   |              |
|   | $\mathbf{Q}$ |
| 1 | 10mm         |
| 5 | ij.          |
|   | ē            |
|   | Ξ.           |





## **Results after calibration**







|   | ga Milit  | N N  |
|---|-----------|------|
| ľ |           |      |
|   | la        |      |
|   |           | 2    |
|   | Name<br>A | 2    |
|   |           |      |
| - | c,        |      |
|   | ā         | ŝ    |
|   | 2         | 3    |
|   |           | 1000 |
|   |           | 2    |
|   |           | 5    |
|   | g         | 3    |
|   | 10,000    |      |
|   | 2         | 5    |
| 1 | ľ         | ŝ.   |
|   | į,        |      |
| 2 | 5         |      |
|   | Ē         | 2    |
|   | 5         |      |



-10





## **Results with 9 Subbasins**

|                |                     | Simulation with 9 subassi |
|----------------|---------------------|---------------------------|
| Volume         | [1000m3]            | 921                       |
| Peak time      |                     | 1/22/202                  |
| R <sup>2</sup> |                     |                           |
| Peak Discharge | [m <sup>3</sup> /s] | 8                         |

Catchment Discharge Gage
Tordera 9 Subbasins















## **Results with 3 Subbasins**

|                |                     | Simulation with 3 subass |
|----------------|---------------------|--------------------------|
| Volume         | [1000m3]            | 100                      |
| Peak time      |                     | 1/22/202                 |
| R²             |                     |                          |
| Peak Discharge | [m <sup>3</sup> /s] |                          |

Catchment Discharge Gage Tordera 3 Subbasins













## **Definition of Uncertainty**

### Uncertainty can be understood as the lack of confidence regarding an analysis, model or data; derived from imprecisions introduced by the model structure and input data.















## **Sources of Uncertainties**







UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



Vrije Universiteit









## **Measurement station**









UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

















## Precipitation



### Figure 6 Rain Gauge Station Precipitation(XS,VX)













## Precipitation







Exclusion

• Rain Gauge Station

• Selected Gauge Station Viladrau(WS) Puig Sesolles(XK) Tagamanent-PN del Montseny(VX) Vilobí d'Onyar [VN] Fogars de la Selva [KP] Dosrius - PN Montnegre Corredor [UQ] Malgrat de Mar [WT]

### Figure 7 Rain Gauge Station Data Selection in catchment











## **CN Numbers**



### Figure 8 Curve number repartition in the basin.



















## **Sources of Uncertainties**







UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH











## Loss method

### SCS Curve Number





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH



Vrije Universiteit Brusse

Brandenburgische Technische Universität Cottbus - Senftenberg POLYTECH° NICE SOPHIA

R 







## Solutions to decrease uncertainty

- Adding rain measuring stations inside the model  $\bullet$
- Verify the calibration of the measurement station
- Calibrate the station for extreme events
- Change the Loss method to the most suitable one
- Increase the number of subbasins  $\bullet$





















## Conclusions

- As computer models are "simplified" representations of reality, 100% accuracy is not possible as many uncertainties exist in the nature of a model.
- Errors during data gathering, simplifications and the methodologies can be the sources of the uncertainties.
- Limits of the models should be understood and must be kept in mind while concluding the results.
- Having multiple models and running sensitivity analysis may help to understand the limitations and also help to manage uncertainties.





UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH











