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Design Storms

Design storms are hypothetical rainfall events

To simulate extreme rainfall events that are rare but
have a significant impact on water resources

In the UK, design storms are used in the Flood
Estimation Handbook (FEH) for flood impact
assessment

Very hard to have catchments with more than 100
years of data
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Figure 1: UK Design Storm Pattern, Balbastre-Soldevila & al. (2019)



Ouseburn catchment

Surface area: 55km?
Location: Newcastle

Low gradient - flat
Moderate soil permeability
Heavily urbanised

600/700mm average annual rainfall
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Figure 2: Ouseburn Catchment igloo Regeneration | Ouseburn Valley, Newcastle



http://www.iglooregeneration.co.uk/portfolio_page/ouseburn-valley-newcastle-upon-tyne/

—_— SHETRAN Model

« Evapotranspiration from
root zone, intercepted waters
and from soil

Why SHETRAN?
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Figure 3: SHETRAN Model scheme, research.ncl.ac.uk/shetran/



— Sensitivity Analysis

e Used NSE and Bias as Objective

Functions

e +50% and -50% variations were

applied to the 1nitial values
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Figure 4: Percentage change of Bias




— Sensitivity Analysis

Parameters Sensitivity:

e AE/PE Field capacity

e Saturated Conductivity

e Strickler Coefficient

Percentage Change (NSE)
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Figure 5: Percentage change of NSE




— Monte Carlo Calibration
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Figure 6: Monte Carlo Calibration Technique Example

Create parameter ranges based on published
values.

Randomly generate a large number of
parameter scenarios within the range.

Compare the parameter scenarios objective
functions.

Reduce parameter equifinity uncertainty



— Calibration Results

BIAS for calibration phase NSE for calibration phase
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Figure 7: Bias results in calibration Figure 8: NSE results in calibration



Calibration Results

Simulated flows:
e Poorly represent baseflow.
e Over estimate flood peak magnitude.

e Fail to accurately capture receding limbs
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Figure 9: Calibration simulations plots




Design Storm Methodology

e 'T'wo sources-
-Winter and summer profiles which are from the flood study report (used in industry)

-Front, Centre and Back are used from study that was done in 2023 (Roberto Villalobos, 2023)
e Spin up period model

® Model is run for 12hr
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The  different design storms
simulate different peak flows and
thus 1t 1s 1mportant to consider

different storm profiles.

Design Storm Simulations

0 r..;;::-l“:;‘;-air
1 ey R )
14 TN . - 70
NI YIRW —— front_loaded
i \, ) L
5] AR centre_loaded 60
'y - —— back loaded
€ 34 l: - -~ summer
I .
= | winter
o -
= |
'™
o

Time (hours)

Flow (m3/s)

Figure 10: Design storm simulations
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— Conclusions

e UK should begin to use design storms with different profiles.
e Substantial impact of new storm design profiles on UK infrastructure
e Limitations of SHETRAN model

o Parameter uncertainty

o Long run times

o Hard to find accurate measured parameter
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