

# Design Storm analysis at the Ouseburn catchment using SHETRAN

#### Group 6

**GHAZANFARI** Bardia

SKIFA Nadia

**RODRIGUEZ** Andrea

**ZIRAK** Oumayma

MARCHAND Bastien

**GERMAIN-BONNE** Laura

MICHEL Melvyn

LHERITIER Florian

**ROMAN Axel** 





## Catchment and Software Overview

• **Ouseburn Catchment :** urban catchment (Newcastle

#### Upon Tyne)

- $\Rightarrow$  flat region
- ⇒ Moderate soil permeability
- $\Rightarrow$  Average rainfall: 600 to 700 mm/yr
- SHETRAN: Physically based distributed model
  - $\Rightarrow$  Able to perform a detailed simulation of the catchment
  - ⇒ Advantage : Small modification can produce great difference in output.

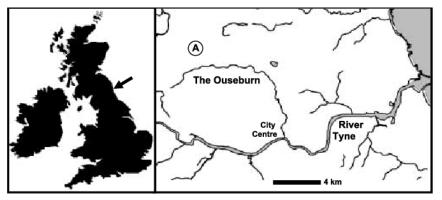
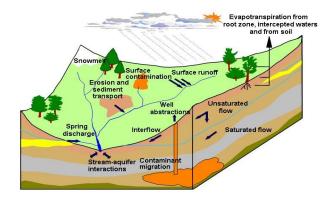




Fig. 1. Location map of the Ouseburn, NE England.



# Workflow

- Vary each parameter at a time
- Find the 3 most sensitive parameters

Model Calibration

- Find min/max of each of the parameters
- Find the optimal NSE and BIAS for the parameter combination

• Compare FSR with Front/ Back/ Center loaded storms

• Find the main differences and limitations to these design storms in the Shetran model

Design storms

Sensitivity Analysis

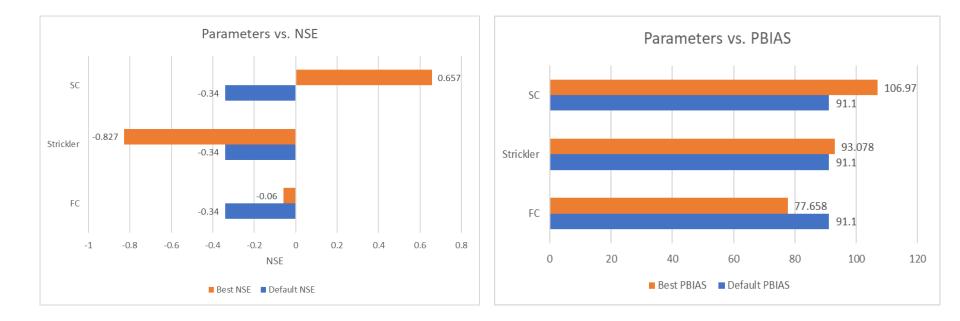
## Sensitivity Analysis

- 10 parameters were investigated
- NSE & BIAS are numerical criteria to test the sensitivity of each parameter
- Negative NSE implies that the model is fully irrelevant;
- => Hence the most sensitive parameters were selected to improve the simulation by calibrating the model

| Investigated<br>Parameters | Representation                                           |  |
|----------------------------|----------------------------------------------------------|--|
| SWC                        | Soil water content                                       |  |
| SC                         | Saturated Conductivity (m/day)                           |  |
| RWC                        | Relative water content                                   |  |
| ALPHA                      | Baseflow Factor                                          |  |
| VANG-N                     | Soil moisture characteristic (1/cm)                      |  |
| CANOPY                     | Canopy Storage Capacity (mm)                             |  |
| LAI                        | Leaf Area Index                                          |  |
| R DEPTH                    | Maximum Rooting Depth (m)                                |  |
| AE/PE at FC                | Actual/Potential evapotranspiration<br>at Field Capacity |  |
| Strickler coefficient      | Surface Roughness                                        |  |

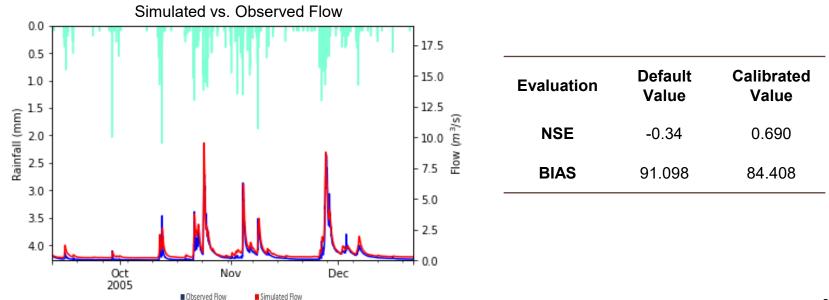
## **Pseudo Calibration**

- Selecting 3 most sensitive parameters to perform the calibration with
  - 1. Strickler Overland flow coefficient
  - 2. AE/PE at Field Capacity
  - 3. Saturated Conductivity
- Picking 4 random values in the range and assess the best values for selected parameters regarding the optimal NSE and BIAS


|        | AE/PE at Field Capacity |        |        |        |
|--------|-------------------------|--------|--------|--------|
| Values | 0.2                     | 0.4    | 0.6    | 0.8    |
| NSE    | -0.709                  | -0.491 | -0.261 | -0.06  |
| BIAS   | 104.852                 | 96.764 | 87.772 | 77.658 |

|       | Saturated Conductivity (m/day) |          |          |          |
|-------|--------------------------------|----------|----------|----------|
| Soil1 | 5                              | 10       | 20       | 20       |
| Soil2 | 1.00E-02                       | 1.00E-03 | 1.00E-01 | 1.00E+00 |
| Soil3 | 1.00E-04                       | 1.00E-05 | 1.00E-03 | 1.00E-02 |
| NSE   | -0.340                         | -0.128   | 0.404    | 0.657    |
| BIAS  | 91.098                         | 91.437   | 93.854   | 106.969  |

### **Pseudo Calibration Results**


| Parameters in<br>order of<br>sensitivity | Range       | Default Model                                                                                   | Best Value                                                                           | Evaluation                         |
|------------------------------------------|-------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|
| Strickler Overland                       | 2 - 100     | Vegetation : 2                                                                                  | Vegetation: 2                                                                        | NSE: -0.827                        |
| flow Coefficient                         |             | Urban : 12                                                                                      | Urban: 12                                                                            | BIAS: 93.087                       |
| AE/PE at Field                           | 0 - 1       | Vegetation: 0.53                                                                                | Vegetation: 0.8                                                                      | NSE: -0.06                         |
| Capacity                                 |             | Urban: 1.0                                                                                      | Urban: 1.0                                                                           | BIAS: 77.658                       |
| Saturated<br>Conductivity (m/day)        | 0.001 - 100 | 1 <sup>st</sup> Layer: 5.8615<br>2 <sup>nd</sup> Layer: 0.0141<br>3 <sup>rd</sup> Layer: 0.0010 | 1 <sup>st</sup> Layer: 20<br>2 <sup>nd</sup> Layer: 1<br>3 <sup>rd</sup> Layer: 0.01 | <b>NSE: 0.657</b><br>BIAS: 106.969 |

### Pseudo-Calibrated Model vs. Initial Model



## Model Calibration Result

• Simulation result improved significantly after running the model with the new values



## **Design Storms**

- Synthetic distribution of rainfall
- 100-year return period event
- FSR method is currently used which is based on 112 studied events to define the design storms used in the UK
  - 80 summer storms used for urban areas FRAs
  - 32 winter storms used for rural areas FRAs
- Three approaches for performing the design storm using 70000 events to create
  - 1. Front loaded
  - 2. Center loaded
  - 3. Back loaded

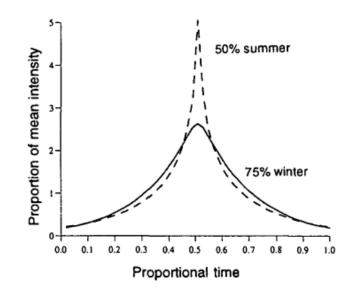
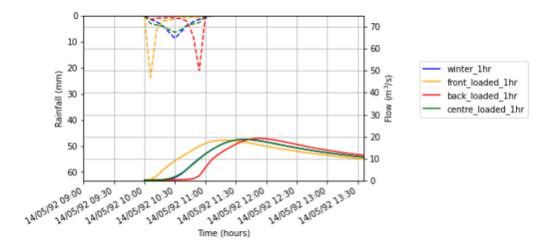
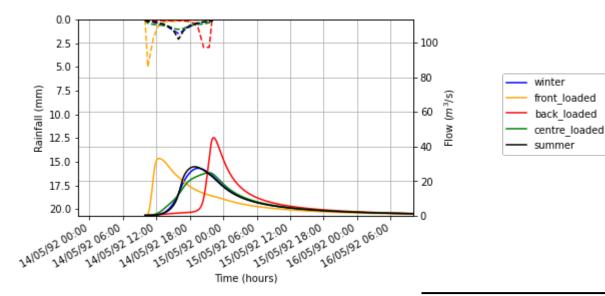




Figure: Design rainfall profiles for winter and summer, as normalized hyetographs (FEH)

⇒ Is there a difference in the simulated flows with these new profiles?How will it compare to the currently used summer and winter profiles?


## Result for 1-hour storm Duration

- 1 hour is not enough time to conclude a difference between FSR (winter/summer) and front/back/centre approaches
- The front/back/centre approaches doesn't show many differences in Peak discharge



|                 |               | Maximum peak flow (m3/s) | Time to peak        |
|-----------------|---------------|--------------------------|---------------------|
|                 | Back loaded   | 19.183                   | 1992-05-14 11:54:00 |
| Design<br>Storm | Front Loaded  | 18.442                   | 1992-05-14 11:18:00 |
| Storm           | Center Loaded | 18.732                   | 1992-05-14 11:36:00 |
| Industry        | Winter        | 18.745                   | 1992-05-14 11:36:00 |
| Storm           | Summer        | 18.758                   | 1992-05-14 11:36:00 |

## Result for 12-hour storm Duration



|                 |               | Maximum peak flow (m3/s) | Time to peak        |
|-----------------|---------------|--------------------------|---------------------|
| Design<br>Storm | Back loaded   | 45.163                   | 1992-05-14 22:18:00 |
|                 | Front Loaded  | 33.168                   | 1992-05-14 12:30:00 |
|                 | Center Loaded | 24.882                   | 1992-05-14 21:30:00 |
| Industry        | Winter        | 27.475                   | 1992-05-14 19:30:00 |
| Storm           | Summer        | 28.370                   | 1992-05-14 18:54:00 |

## **Conclusions and Recommendations**

The model performance improved considerably after calibration; NSE from -0.34 to 0.690
Needs more detailed evaluation of all factors that controls the hydrological process

For 1-hour storm duration the industry design storm can be used because of similar peak discharge between the FSR and back/centre/front approach (<1 m3/s)

For 12-hour storm duration because of the significant difference of peak flow, the back/centre/front study needs to be implemented in order to have better flood prevention

 Creating more design storms and more profiles helps us to have more detailed view of catchment response to precipitation



# Design Storm analysis at the Ouseburn catchment using SHETRAN

#### Group 6

**GHAZANFARI** Bardia

SKIFA Nadia

**RODRIGUEZ** Andrea

**ZIRAK** Oumayma

MARCHAND Bastien

**GERMAIN-BONNE** Laura

MICHEL Melvyn

LHERITIER Florian

**ROMAN Axel** 



