

HYDROEUROPE TEAM 7 WEEK 1 PRESENTATION

UNCERTAINTY IN HYDROLOGICAL ANALYSIS

CHAND Rajesh Kumar, CHUNG Hong Ho, DALON Thibaut DAVOINE Florian , LAGRANGE Quentin , LEPLEY Florian LIU Chia-An ,BUCKSTÖVER Mira ,MORILLON Camille

PAKOA Rodrigue ,XUTUC Abigail

Brandenburg niversity of Technoloav ottbus - Senftenbera

BARCELONATECH

Background

Ahr catchment

WEST OF GERMANY

Fig. 1 : Boundaries of the Ahr watershed

Vesubie catchment

SOUTH-EAST OF FRANCE

Fig. 2 : Limits of the Vésubie catchment area

Flooding **Ahr Catchment**

July 2021 ~200 people dead ~30 billion euro Damaged

Vesubie catchment

Oct 2020 10 people dead 1,5 billion euro damaged

Ahr catchment	Vesubie catchment
899.3 km²	392.1 km²
Forests (56%) Agricultural (36%)	Forests (49 %) Semi-natural (45%)
Type C (92 %)	Type C (73 %) Type B (19 %)
82	80

Land Use + Soil type combinations give similar hydrologic conditions
Similar runoff potential would be expected

Topographies

Fig. 6 : Surface elevation distribution, Ahr catchment

Fig. 7 : Surface elevation distribution, Vesubie catchment

Valor de píxel

■ Banda 1

Mean Majo slo Maxi slo

 \triangle

Pendien te Vesubie

110 %

0%

15 km

Banda 1 (Gray)

	Ahr catchment	Vesubie catchment
Slope	14.72 %	38.27 %
rity of pes	0 % - 20 %	20 % - 60 %
mum pe	85.10 %	106.32 %

- For Vesubie catchment
 - Topography increases the runoff potential
 - Greater flood velocities can be expected

Rainfall Time Series

Fig. 8 : Distribution of rain gauges and associated Thiessen polygons

Hec-Hms modelling

Analysis of the impact of :

• Different spatial rainfall intensities

• Different temporal rainfall intensities

Fig. 10 : Representation of the HEC-HMS model of the Ahr watershed.

Results : Temporal Intensity

• Same rainfall amount for all Scenario Input Scenario

Temporal Rainfall Intensity 1600 25 1400 20 1200 Precipitation (mm) Base Scenario Radar Data Discharge (m³ /s) 1000 15 Scenario 1 800 10 -Scenario 2 600 5 400 200 0 12:00 13/07/21 00:00 12/07/21 12:00 14/07/21 00:00 15/07/21 00:00 15/07/21 12:00 16/07/21 00:00 16/07/21 12:00 13/07/21 12:00 0 7/12/2021 0:00 14/07/21 Date

Figure 11 : Rainfall Scenarios for Hydrological Model

Ouput Hydrograph

Hydrograph at Outlet of Ahr Catchment

Results: Spatial Intensity

• Same Runoff Volume in cathmnent for all Cases **Input Scenario**

Output Hydrograph

Figure 14 : Output Hydrograph at Ahr Outlet

Conclusion

- Gauge measurement Data underestimate or overestimates the rainfall in the area far from the Gauge location (Depending on Spatial Interpolation)
- Spatial Distribution influences the Hydrological Models
- Higher rainfall in upstream mountainous region result higher peak
- Rainfall Intensity seems sensitive to peak flow (Flash Flood)
- Shorter and Higher precipitation increase flash floods