Integrated Project

Erasmus+ Programme Cooperation Partnerships 2022-1-FR01-KA220-HED-000089658 **HydroEurope**

Climate Change Impacts on Flash Flood Case Study Tervuren Catchment (Belgium)

Rainfall and Discharge Calculation and Climate Change: 2D Flood Model – LISFLOOD-FP

Nahad Helmi, Vrije Universiteit Brussel Version 2.19 Feb - 1 Mar 2025

HYDROEUROPE

1 Introduction

Climate change is intensifying flash floods by amplifying rainfall extremes and altering precipitation patterns. Warmer temperatures enable the atmosphere to hold more moisture, resulting in sudden, heavy rainfalls that can swiftly overflow rivers and drainage systems. This increment in extreme weather events, combined with shifting storm patterns, makes flash floods increasingly frequent and severe, especially in regions already prone to flooding.

Rainfall and discharge data are essential for understanding climate change impacts on flash floods. Changes in rainfall intensity and patterns can increase flash flood risks, while discharge data reveal how water systems respond to these shifts. Together, they support accurate flood modelling and help anticipate future flood events under changing climate conditions.

1.1 Rising Greenhouse Gas Emission

Greenhouse gas (GHG) emissions have steadily increased, raising global temperatures. This warming, now around 1.1°C above pre-industrial levels, leads to higher atmospheric moisture, fueling intense rainfall events that contribute to flash floods.

1.2 Increase of CO₂ concentrations

HydroEurope

Co-funded by the European Union

ved globally averaged combined land and ocean surface temperature anomaly 1850–2012

1900

2000

1950 Year

Human activities have significantly increased CO_2 levels since the 1800s, primarily through fossil fuel use, deforestation, and industrial processes. This rise in CO_2 is confirmed by several indicators: higher concentrations in the Northern Hemisphere, specific carbon isotope changes, and an inverse relationship with oxygen levels due to combustion. These shifts disrupt the natural carbon balance, contributing to global warming, which amplifies extreme weather events like flash floods by intensifying rainfall patterns and increasing atmospheric moisture.

1.3 Climate change impacts

Climate change is intensifying water scarcity, agricultural drought, and health risks for livestock, while also reducing fishery yields. Urban areas, especially coastal regions, face heightened risks of flooding, storm-related damages, and infrastructure degradation, which disrupt economic activities.

(IPCC, 2023; AR6)

Evidence links these impacts to human-induced climate change, with varying levels of confidence. There is moderate confidence that climate change is driving more frequent droughts and fire-prone weather, a high likelihood of increased heavy rainfall events, and strong certainty around rising sea levels and more frequent extreme heat. These changes underscore the pressing need for adaptive and mitigative actions to protect both ecological and human systems

1.4 Shared Socioeconomic Pathway (SSPs)

The Shared Socioeconomic Pathways (SSPs) are a set of scenarios used to explore possible futures in climate change research based on different socioeconomic conditions and greenhouse gas emissions. Each pathway presents varying levels of challenges for both adaptation and mitigation. These scenarios help researchers evaluate the potential impacts of socioeconomic developments on climate outcomes.

HydroEurope

Tervuren Catchment: Preprocessing of Flood Model Data Input

VRIJE UNIVERSITEIT

UB

1.5 Climate Change Adaptation Measures

Effective Adaptation Examples

Effective climate adaptation strategies implemented across various sectors are yielding multiple benefits. In agriculture, resilience is enhanced through cultivar improvements and on-farm water management, helping maintain productivity amid changing climate conditions. In urban settings, Low Impact Development (LID) practices, such as porous pavements and rain gardens, are employed to manage stormwater and reduce flood risks. Furthermore, combining non-structural approaches, like early warning systems, with structural measures, such as levees, strengthens flood resilience and mitigates disaster impacts. Collectively, these adaptations contribute to building more sustainable and resilient communities

1.6 Low Impact Development (LID)

Low Impact Development (LID) is an approach that seeks to restore natural hydrological processes to manage stormwater sustainably. This strategy includes tools like porous pavements, rain gardens, green roofs, infiltration basins, riparian zones, and constructed wetlands. These LID practices offer numerous benefits: they reduce surface flooding by mitigating peak flows, lower lifetime and offsite costs, and provide multifunctional spaces that add environmental and social value.

1.7 International Climate Agreements

The Paris Agreement set global commitments to limit warming to well below 2°C, with a target of 1.5°C, by reducing greenhouse gas emissions through nationally determined contributions (NDCs). This agreement represents a historic international effort where all countries have pledged to contribute to climate action.

At COP28 in 2023, key developments included the establishment of a "loss and damage fund" to support countries most affected by climate impacts. Additionally, nations made various commitments to enhance climate resilience, including pledges to improve food systems, promote clean hydrogen, and improve air conditioning efficiency. These initiatives reflect ongoing efforts to address the increasing challenges of climate change.

HydroEurope

1.8 Climate Models

Climate models are essential for understanding and predicting flash floods, as they simulate the complex interactions between atmospheric, land, and oceanic processes under various climate scenarios. By analysing factors like precipitation intensity, land use changes, and temperature increases, models allow scientists to assess potential flood risks. Integrated models examine how economic and energy policies impact climate conditions, influencing flood patterns. The use of these tools also allows to modify historical data to reflect potential future scenarios, helping predict extreme events like flash floods. Together, these models support effective planning and adaptation strategies to mitigate flood impacts in vulnerable regions.

1.9 Rainfall Data

Rainfall patterns, especially intensity, duration, and frequency, are directly influenced by climate change. More intense and irregular precipitation events increase the likelihood of flash floods, overwhelming natural and engineered drainage systems.

Reliable rainfall data help capture these shifts and are essential for projecting future flash flood risks.

Tervuren Catchment: Preprocessing of Flood Model Data Input

HydroEurope

1.10 IDF Curve

IDF (Intensity-Duration-Frequency) curves, which represent the statistical relationship between rainfall intensity, duration, and frequency, are important for climate change analysis as they inform event-based simulations of extreme weather. IDF curves help estimate how often certain rainfall intensities may occur, aiding flood risk assessment and infrastructure design.

However, due to limitations in available data, IDF curves can exhibit asymmetry and bias, which may reduce accuracy. Correcting these biases is essential to improve the precision of climate impact models and make better-informed planning decisions.

1.11 Discharge Calculation

In the context of climate change, accurately calculating discharge is crucial for anticipating extreme events, which are expected to become more frequent and intense.

HydroEurope

This workflow integrates statistical filtering and extreme value analysis, ensuring that discharge calculations account for high flow variability and extremes, which helps in designing resilient infrastructure and managing water resources.

1.12 Sub-flow filtering

Using the WETSPRO tool, long-term hourly discharge data undergoes sub flow filtering to separate baseflow and interflow, with further overland flow filtering to produce filtered discharge components. By isolating baseflow and interflow, which represent the more stable, it helps filter out normal discharge events and prepare the data for identifying only the extreme events.

1.13 POT Selection

The filtered baseflow and interflow data are processed through a Peak-Over-Threshold (POT) extraction, isolating high flow events. It allows the analysis to focus specifically on extreme discharge events, providing a more accurate basis for calculating the probability of severe flood events.

1.14 Extreme Value Analysis

Using the ECQ tool for hydrological extreme value analysis, the POT values are analysed to identify distribution tail behaviour and threshold, leading to the calculation of distribution parameters, providing the necessary inputs to calculate discharge values for specific return periods, predicting the likelihood of extreme discharge events.

HydroEurope

Tervuren Catchment: Preprocessing of Flood Model Data Input

ΛB

2 Case Study: Tervuren Catchment

- The study area of this project is Tervuren Municipality, Belgium
- A large area in Tervuren is at risk of urban fluvial and pluvial floods (HNL, 2023; Flemish Government, 2023)
- Climate change is expected to increase precipitation extreme which potentially exacerbate urban pluvial flooding in Tervuren

HydroEurope

3 Step by step tutorial

3.1 Introduction

This exercise is the last part of LISFLOOD input data preparation series which will present the workflow to prepare rainfall data file (.rain). Design storm which will be used as model data input is based on corrected curve of Intensity-Duration-Frequency (IDF) Curve in Ukkle Station. Additionally, the river discharge time series (time-varying boundary condition) will be calculated. To analyse 100-years return period flood, hydrological sub-flow filtering and extreme value analysis will be carried out using WETSPRO and ECQ to obtain 100-years design discharge. WETSPRO is a time-series tool developed by Willems (2008) that allows separation of rainfall-runoff discharge into the overland flow, interflow, and baseflow based on linear reservoir modelling concept. ECQ, developed by Willems, et al. (2007), describes the probability of the occurrence of extreme events based on extreme value.

This tutorial will also include the use of The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), a modeling framework that assesses the impacts of climate change consistently across various sectors, including biodiversity, health, water, agriculture, energy, and coastal infrastructure.

3.2 Rainfall Data

The 'Corrected IDF Curve.xlxs' spreadsheet is provided to facilitate the construction of corrected IDF curve for different return periods. Estimated accumulated precipitation in mm for 5, 10, 15, 30, 60, 120, 180, 360 minutes duration, which will be used as data input for this calculation, is available in 'Tervuren Rainfall Input.xlxs'.

Step 1: Input Data, Intensity Calculation, IDF Curve Plotting

To begin with, input the estimated precipitation frequency in the designated part in the 'Corrected IDF Curve.xlxs'. While the spreadsheet allows calculation of design storm for different return periods, it is possible to only provide and calculate design storm of one desired return period. After the data is input, rainfall intensity for each duration [mm/hr] for each return period will be calculated and IDF curves will be plotted.

HydroEurope

Tervuren Catchment: Preprocessing of Flood Model Data Input

JUB

Step 2: Design Storm Calculation

Display the equation based on 'power' trendline of IDF Curve plot and use the formula to calculate intensity for each time step (for example 5 minutes).

In the example below, the formula is used to calculate 5-mins time step rainfall on cell E4:E62. Based on this data, corrected intensity will be calculated from 5-minutes time step rainfall depth based on reconstructed symmetrical IDF curve. Corrected rainfall intensity is the output of this calculation which will be used in the rainfall data file (.rain).

E14	∨ :×	$\sqrt{f_x}$	=695.0	1*(D14^-(0.587)									
A I	вс	D	Е	F	G H	I.	J	К	L	м	N	0	P	Q
0 36	0 6					54.356	70.358	115.316	130.048	148.082	176.276	9.059	11.726	19.21933333
2						100 Years Retu	Im Period							
3	equation for 2vr	time [min]	ntensity m	Accumulated fr	nm] Acc. True Vi	ali Incremental r	symmetrical			time [hr]	time[min] 1	time[sec]	Rainfall depth [mm]	Intensity (mm/hr)
4	y= 695.01x-0.587	5	270.2064 .84	22.51720153	9.423	4 22.51720153	22.51720153		245	0	0	0	0	0
5		10	79.15129 78	13.1918833					235	0.083333333	5	300	0.413557818	4.962693815
6		15	62.18472 84	15.54618246	15.697	2 -6.971019071	-3.485509536		225	0.166666667	10	600	0.424644811	5.095737737
7		20	52.40167)14	17.46722638					215	0.25	15	900	0.43656639	5.238796683
8		25	45.88637 56	19.11932273		3.573140274	1.786570137		205	0.333333333	20	1200	0.449429861	5.393158328
9		30	41.16905559	20.58452779	21.640	8			195	0.416666667	25	1500	0.463362645	5.560351743
:0		35	37.56103519	21.91060445		2.791281713	1.395640857		185	0.5	30	1800	0.47851737	5.74220844
51		40	34.69224.12	23.12816074					175	0.583333333	35	2100	0.49507861	5.940943316
2		45	32.34421 26	24.2581607		2.347556251	1.173778125		165	0.666666667	40	2400	0.513271968	6.159263622
:3		50	30.37881)85	25.3156832					155	0.75	45	2700	0.533376512	6.400518146
94		55	28.70398372	26.31198966		2.053828966	1.026914483		145	0.833333333	50	3000	0.555742114	6.668905364
5		60	27.25574 98	27.25574498	27.68	16			135	0.916666667	55	3300	0.580814177	6.969770121
:6		65	25.98810 46	28.15377983		1.841790171	0.920895085		125	1	60	3600	0.609169745	7.310036935
97		70	24.86707574	29.01158837					115	1.083333333	65	3900	0.641571733	7.6988608
:8		75	23.86693219	29.83366524		1.679885408	0.839942704		105	1.166666667	70	4200	0.679053085	8.148637018
9		80	22.96780587	30.62374116					95	1.25	75	4500	0.723052453	8.67662943
10		85	22.1540336	31.38495176		1.551286523	0.775643261		85	1.3333333333	80	4800	0.775643261	9.307719136
1		90	21.41330/71	32.11996157					75	1.416666667	85	5100	0.839942704	10.07931245
12		95	20.73540 21	32.83105667		1.446104905	0.723052453		65	1.5	90	5400	0.920895085	11.05074103
13		100	20.11212)23	33.52021539					55	1.583333333	95	5700	1.026914483	12.3229738
14		105	19.53666 48	34.18916284		1.35810617	0.679053085		45	1.666666667	100	6000	1.173778125	14.08533751
5		110	19.00331558	34.83941372					35	1.75	105	6300	1.395640857	16.74769028
16		115	18.50729)25	35.47230631		1.283143467	0.641571733		25	1.833333333	110	6600	1.786570137	21.43884164
17		120	18.04451 83	36.08902967	36.32	2			15	1.916666667	115	6900	-3.485509536	-41.82611443
18		125	17.61150)98	36.6906458		1.218339489	0.609169745		5	2	120	7200	22.51720153	270.2064184
19		130	17.20528)46	37.27810766					15	2.083333333	125	7500	-3.485509536	-41.82611443
.0		135	16.82323 296	37.85227415		1.161628354	0.580814177		25	2.166666667	130	7800	1.786570137	21.43884164
1		140	16.46310 961	38.41392243					35	2.25	135	8100	1.395640857	16.74769028
-2		145	16.1229345	38.96375838		1.111484227	0.555742114		45	2.3333333333	140	8400	1.173778125	14.08533751
		intens tim	sity (5-i e step	mins s)										Output: corrected
														intensity

The format of the rainfall data file in shown in the figure below and the explanation of every line is described in Table 1.

Tervuren Catchment: Preprocessing of Flood Model Data Input

HydroEurope

Co-funded by the European Union

📕 t	ervuren	×	+		-	\times
File	Edit View					ŝ
Tervur	ren Design Rainfall					
577	seconds					
0	0					
0	300					
0	600					
0	900					
0	1200					
0	1500					
0	1800					
0	2100					
0	2400					
0	2700					
0	3000					
0	3300					
0	3600					
0	3900					
0	4200					
0	4500					
0	4800					
0	5100					
0	5400					
0	5700					
0	6000					
0	6300					
0	6600					
0	6900					

Table 1 Rainfall File Description

Line	Description
1	Command line
2	Number of time points at which boundary information is given followed by a keyword for the time units used (either 'days', 'hours' or 'seconds').
3	Value Time

Line 5 to the end of the time series follow the same format as line 3.

3.3 Extreme Event Discharge

NIVERSITAT POLITÈCNICA

AIB

UNIVERSITEIT

a. <u>WETSPRO</u>

Step 1: Sub-flow Filtering

Sub-flow filtering and POT selection will be carried out using WETSPRO (WETSPRO.xlsm). To begin with input hourly discharge data in the input section. The separation began with baseflow separation, followed by interflow and overland flow at last. To carry out the separation, k and w were calibrated to fit the slope of sub-flow in the overall discharge. The calibration should start with 'recession constant [number of time step]' ('w-parameter [-]' set as 1), followed by w-parameter calibration. Set the remaining filter parameters as default, meanwhile, for visual analysis adjust 'distance lines graph [number of time steps]' and 'first time step lines' in Graphical parameters. Afterward, click 'execute baseline' to execute baseline filtering and check the result on 'Chart results' \rightarrow 'Filter result – BF'.

HydroEurope

WARSAW UNIVERSITY OF TECHNOLOGY Newcastle University

Figure 1 examply discharge time series with the resulted filtered baseline along with slope recession constant. Baseline slope in time series measurement, usually found after a long dry period (blue line), should be fitted with slope recession constant for baseflow (green line) to identify filtered baseflow (pink line). The same line-fitting procedure is applied for interflow and overland flow. The final result of discharge filtering is shown in 'Chart results' \rightarrow 'Filter results'.

Figure 1 Baseflow filtering based on recession constant (Source: Statistics for Water Engineering / Stochastic hydrology Lecture Material)

Step 2: POT Selection

In this exercise POT selection will be carried out using method 2 available in WETSPRO. Using this method, peak discharge is classified as POT if it exceeds the minimum peak height and is considered independent. Two successive discharges are considered independent if the maximum difference ratio between the sub-flows approaches the baseflow value (baseline + interflow).

HydroEurope

W155PD: Water Explorenting Time Series PROcessing tool				
File Home Insert Page Layout Formulas Data Review View Automate Add-ins Help EXECLE Input Subflow filtering POT selection Model validation Sheets results Charts results Is support bar Is About WETSPRO Execute Execute Execute POT selection sow filterence Execute POT selection sow filterence Execute POT selection quick flow periods Total Output catom bothans Method: Catom bothans Method:	WETSPRO: Water Engineering Time Series PROcessing tool			
Clear Input Subflow filtering POT selection Model validation Sheets results Outs results About WETSPRO	File Home Insert Page Layout Formulas Data F	Review View Automate	Add-ins Help	
Image: Control controc control control control control control	← EXCEL Clear Input Subflow filtering POT se	election Model validation	Sheets results v Charts results	👻 🐉 support bar 🛛 🐉 About WETSPRO
Custom Teollars AutoSave Save	🛱 🗋 100% 👻 🗒 Scrollbars on/off 🔮 Header o	on/off 🖉 Formulabar on/off		
Method: OUICK FLOW periods SLOW FLOW periods Method: 0 0 dependent on baseflow (1) or baseflow/interflow (2) 2 0 Parameters: 0.1 0.2 min peak height (unit of series) 5 50 Exacute POT selection quick flow periods Stow flow periods Exacute POT selection quick flow periods 100 Method: 0 0 min peak height (unit of series) 0 0 Method: 0 0 min peak height (unit of series) 100 1000				
AutoSave Image: Save Image: Control of the same control of the sa		Custom Toolbars		
QUICK FLOW periods SLOW FLOW periods Method:	AutoSave 🔵 Off) 🔚 Save 🤌 Undo 🕤 🖓 Redo 🗠 💆 Shape	Outline Y 🗢		
Method:		QUICK FLOW periods	SLOW FLOW periods	
Method:		Quicker Lorr periods	CECHT ECH periods	
dependent on baseflow (1) or baseflow-interflow (2) .or independent (0): 2 0 Parameters: 0 0 max. ratio difference with subflow [-]: 0.1 0.2 maxed of the stream intervence of time stream intervence of the stream inter	Method:			
Or independent (0): 2 0 Parameters: 0 0.2 Independent/ berind infumer of time steps: 50 150 Independent/ berind infumer of time steps: 50 50 Exacute POT selection quick flow periods 50 50 Graphical parameters: 0 0 Independent hydrogr. separation lines (unit of series]: 0 0 Independent hydrogr. separation lines (unit of series]: 100 1000	dependent on baseflow (1) or baseflow+interflow (2)			
Bramelers: 0.1 0.2 inversement, seriod inumeer of ume steps: 5 50 min peak height [unit of series]: 5 50 Graphical parameters: Image: Series 0 0 Image: Note State 0 0	,or independent (0):	2	0	
Branelars: 0.1 0.2 moteoender/cv bend number of time steps: 60 160 min peak height (unit of series): 5 50 Execute POT selection quick flow periods Execute POT selection slow flow periods				
Graphical parameters: 0 0 Independency: separation lines [unit of series]: 0 0	Baramatara			
Substantian of series]: 150 min peak height (unit of series): 5 50 Execute POT selection quick flow periods Execute POT selection slow flow periods Graphical parameters: 0 0 highest Value hydrogr: separation lines (unit of series): 0 0 logo 1000 1000	max. ratio difference with subflow [-]:	0.1	0.2	
min peak height [unit of series]: 5 50 Execute POT selection quick flow periods Execute POT selection slow flow periods	Independency period inumber of time stepsi:	60	160	
Execute POT selection quick flow periods Execute POT selection slow flow periods Graphical parameters: 0 0 Jovest Value hydrogr, separation lines [unit of series]: 0 0 highest Value hydrogr, separation lines [unit of series]: 1000 1000	min peak height [unit of series]:	5	50	
Execute POT selection quick flow periods Execute POT selection slow flow periods Graphical parameters: 0 0 Iowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000				
Execute POT selection quick flow periods Execute POT selection slow flow periods Graphical parameters: 0 0 Novest value hydrogr. separation lines [unit of series]: 0 0 Nighest value hydrogr. separation lines [unit of series]: 1000 1000				
Graphical parameters: 0 0 Invest Value hydrogr, separation lines [unit of series]: 0 0 Invest Value hydrogr, separation lines [unit of series]: 1000 1000		Execute POT selection	Execute POT selection	
Graphical parameters: lowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000		quick flow periods	slow flow periods	
Graphical parameters: lowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000				
Graphical parameters: lowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000				
Graphical parameters: lowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000				
Iowest value hydrogr. separation lines [unit of series]: 0 0 highest value hydrogr. separation lines [unit of series]: 1000 1000	Graphical parameters:			
highest value hydrogr. separation lines [unit of series]: 1000 1000	lowest value hydrogr. separation lines [unit of series]:	0	0	
	highest value hydrogr. separation lines [unit of series]:	1000	1000	

Calibrate and determine 'min. peak height [unit of series]' and 'max. ratio difference with subflow [-]' by the level of strictness in defining the POT values. The result of POT extraction is available on 'Sheet results' \rightarrow 'POTResults', and will be used in the further process. Meanwhile, the visualization is available on 'Chart results' \rightarrow 'POT Selection'.

HydroEurope

b. Extreme Value Analysis

Step 1: ECQ

To analyse extreme value based on descending sorted data of POT extraction, use ECQ: Hydrological Extreme Value Analysis (ECQ.xls). Once the data is input in the 'input' section, examine the tail shape of the distribution, and determine the distribution type of the data. Once the distribution type is identified, distribution fitting and slope calculation for normal tail (heavy tail) was carried out based on QQ Plot (Pareto QQ Plot). The distribution type should be indicated in the ECQ calibration result; 1 for normal tail and 2 for heavy tail. Before the fitting, the threshold point should be identified and input in ECQ by the user. In the case of normal tail (heavy), the optimal threshold value is the point with the lowest MSE in the slope exponential QQ plot (exponential Pareto QQ Plot), which distinguishes the stable and unstable ranges as depicted in Figure 2. Based on these calculations, gamma, beta and Xt can be found. In the case of flood occurrence, the process in ECQ is different.

Figure 2 Example of QQ-plots for a normal tail case (Source: Statistics for Water Engineering / Stochastic hydrology Lecture Material)

HydroEurope

Preprocessing of Flood Model Data Input: Part I

Figure 3 Example of QQ-plots for a heavy tail case (Source: Statistics for Water Engineering / Stochastic hydrology Lecture Material)

Step 2: Return Period Discharge Calculation

The 'Empirical Quantile.xlxs' spreadsheet is provided to facilitate the calculation of return period discharge based on the Generalized Pareto Distribution (GPD) Formula by Pickands (1975). The required input data for the calculation includes the duration of discharge data ('n[years]'), threshold ('t'), gamma, beta, and xt. The last 4 parameters are derived from the extreme value analysis conducted in the previous step using ECQ. Insert the input data into the designated sections, as illustrated in the figure below. Input the sorted POT value into the corresponding section in the figure to plot and examine the calculation against actual data.

The result of the calculation is available in 'return period (normal tail)' row, as shown by figure above.

Tervuren Catchment: Preprocessing of Flood Model Data Input

HydroEurope

Co-funded by the European Unior

c. <u>Time-Varying Boundary Condition File</u>

The return level of discharge is assumed to be the peak value in the time-varying discharge for the 100-years return period flood. To obtain the full time series, identify the peak value in the original discharge time series and select the antecedent and subsequent values based on the desired duration of the time series. Once the full time-series of 100-years return period discharge is obtained, input the data to time-varying boundary condition file (.bdy). More detail information on the items of each line in the .bdy files is explained in Table 2.

Table 2 Time-Varying Boundary Condition File Descrip	otion
--	-------

Line	Description
1	Command line
2	Boundary identifier (this should be consistent with notation supplied in the.bci file).
3	Number of time points at which boundary information is given followed by a keyword for the time units used (either 'days', 'hours' or 'seconds').
4	Value Time

Line 5 to the end of the time series follow the same format as line 4.

3.4 ISIMIP Platform

ISIMIP models the impacts of climate change in a way which is consistent across sectors (currently 15 sectors including fire, groundwater and peat). To make comparison between different climate change possible. The goal of ISIMIP is to mirror CMIP for the impact modelling community **Step 1: ISIMIP Data Download**

Access climate forcing input data to download the meteorological data:

HydroEurope

Step 2: ISIMIP Data Retrieval

ISIMIP provide different protocols with unique focuses, in this case, we are using ISIMIP3B. ISIMIP3B is GCM-based quantification of impacts at different levels of climate change.

Climate forcing

Climate and climate-related forcing data for the ISIMIP2a, ISIMIP2b, ISIMIP3a, and ISIMIP3b simulation rounds.

Find out more about ISIMIP Protocols: https://www.isimip.org/protocol/

· · · · · · · · · · · · · · · · · · ·	Ishthar view Tree C Facets	Show only the latest western O show specific versions with date constraint Selection: You well-cost 0 dataset of 0 B size.	IS 🗆 Show archived Net				
	1944925	Selection You selected 0 dataset of 0 B stre.					
	ISIMEP26		1 datasets found				
	ISIA6P3a	Search constraints tree - ISBNF16-InputSearClines: X query + sip136, pr. gftl X Download file list. Download file list. Download file list. Download file list.					
	S Input Data		(*************************************				
	Climate mused forcing	gfdl-esm4_r1i1p1f1_w5e5_ssp126_pr_global_daily	۵				
	C Atmoscheric forongs	🗇 Select dataset - Attributes 🛩 Hiles 🛩 Cavests 🛩					
Creatify the gues	Attrochers composition						
Climate related forcir Climate variable: pred Climate forcing datab	y: ng: according to S! cipitation pase: GFDL-ESM4 (2019) DOWNLOAD					

ISIMIP retrieval script consist of several parts:

- 1. Understanding NetCDF data.
- 2. Plotting 2D map for specific time.
- 3. Clipping data for specific region (countries, specific area from provided shapefile).
- 4. Converting data to time series for specific point.

Step 3: Task

- 1. Climate Change Scenario Flood
- 2. Extract 2100 precipitation timeseries from ISIMIP
- 3. Compare future precipitation timeseries with current time series (access precipitation data observed in Uccle, Belgium in https://www.waterinfo.be/)
- 4. Identify multiplication factor of precipitation increased due to climate change to model flood with climate change scenario

HydroEurope

