Integrated Project

Erasmus+ Programme Cooperation Partnerships 2022-1-FR01-KA220-HED-000089658 **HydroEurope**

Uncertainty in Advanced Hydrological and Hydraulic Modelling Case Study Tervuren Catchment (Belgium)

Uncertainty Analysis and Data Preprocessing: 2D Flood Model – LISFLOOD-FP

Nahad Helmi, Vrije Universiteit Brussel Version 2.19 Feb - 1 Mar 2025

HYDROEUROPE

1 Introduction

Uncertainty analysis is a method used to assess the degree of confidence in a model's predictions. In hydrological modeling, uncertainty analysis helps evaluate how variations in input parameters or environmental conditions can affect model outcomes. The quality, range, and variability of input data directly impact the reliability of the model's uncertainty analysis

Accurately assessing uncertainty analysis requires specific input data with appropriate resolution and quality.

1.1 Digital Elevation Model

Using a 1-m resolution DTM will provide high-resolution elevation data, by capturing detailed topographic features, and contributing to refine parameter estimation like slope, flow direction, and accumulation.

1.2 River Network Delineation

The river network delineation will improve uncertainty analysis by defining flow paths and connectivity, representing in a better way the water movement and runoff patterns.

Converting the 1-m DEM to a 10-m DEM for river network calculation will help balance detail and efficiency. The 10-DEM will capture the primary stream networks while reducing data volume.

Tervuren Catchment: Preprocessing of Flood Model Data Input

HydroEurope

Implementing lower resolution DTM capture the meanders of Meuse River in a better way

1.3 The impact of data resolution

In uncertainty analysis, high resolution DEMs reduce uncertainty by capturing finer terrain details, resulting in more accurate predictions of flood peaks, timing and inundation areas.

Observed and simulated hydrographs obtained by considering different DEMs in the hydraulic model in Voshmgir dam hydrometric station (Khojeh et al., 2022)

Time evolution of flood inundation area simulated by 2D hydraulic model based on different DEMs

1.4 Strahler Order

Strahler order (a) Not filtered: 1 to 9 stream orders, (b) Filtered: 6 to 9 stream orders overlayed on DTM (6 - pink, 7 - blue, 8 - green, 9).

The Strahler order helps to identify higher order streams representing main rivers, which are more stable and less sensitive to minor variations in terrain or parameter changes. The parameter adjustments near this higher Strahler order will have a more significant impact on flow.

HydroEurope

1.5 Land cover map – Manning Coefficient

The Manning's roughness coefficient is a dimensionless value used to describe the **resistance of a surface to the flow of water**

2D Acceleration Solver

Catagon	Course	Interception of	apacity(mm)	Root	Manning's	Vegetated	Leaf area	index(-)
Category	Cover	Maximum	Minimum	depth(m)	Coefficient	fraction(%)	Maximum	Minimum
1	Evergreen Needleleaf Forest	2	0.5	1.0	0.40	80	60	50
2	Evergreen Broadleaf Forest	3	0.5	1.0	0.60	90	60	50
3	Deciduous Needleleaf Forest	2	0.5	1.0	0.40	80	60	10
4	Deciduous Broadleaf Forest	3	0.5	1.0	0.80	80	60	10
5	Mixed Forest	3	0.5	1.0	0.55	83	60	30
6	Closed Shrublands	3	0.5	0.8	0.40	80	60	10
7	Open Shrublands	2	0.5	0.8	0.40	80	60	10
8	Woody Savannah	3	0.5	1.0	0.50	80	60	8
9	Savannahs	2	0.5	0.8	0.40	80	60	5
10	Grasslands	2	0.5	0.8	0.30	80	20	5
11	Permanent Wetlands	1	0.2	0.5	0.50	80	60	5
12	Croplands	2	0.5	0.8	0.35	85	60	5
13	Urban and Built-Up	0	0.0	0.5	0.05	0	0	0
14	Cropland / Natural Vegetation	2	0.5	0.8	0.35	83	40	5
15	Snow and Ice	0	0.0	0.1	0.05	0	0	0
16	Barren or Sparsely Vegetation	1	0.2	0.5	0.10	5	20	5
17	Water Bodies	0	0.0	0.1	0.05	0	0	0

Table 3.2. Default parameters characterizing land use classes

A 10-m resolution land cover map will improve flood simulation by accurately representing surface roughness and land cover spatial variability across the terrain. A detailed land cover map allows a sensitivity testing on manning's values across specific land cover types, identifying which areas most influence model outcomes.

1.6 Soil/ Infiltration Map

NIVERSITAT POLITÈCNICA

UB

UNIVERSITEIT

The soil map provides detailed information on soil properties, which influence infiltration, runoff, and storage characteristics, capturing variability in areas with diverse soil types across the catchment. Accurate soil data reduces uncertainty in flow and peak discharge calculations.

Obtained and Adapted from Dickinson et al. (1993), Lull (1964), Zinke (1967), Rowe (1983), Chow (1964), Haan (1982), Yen (1992) and Ferguson (1998).

1.7 **River Geometry**

Preparation of River Geometry Map

River geometry provides detailed information on river cross-sections, channel width, depth, and slope, which directly impact flow capacity and flood behaviour.

Bankfull stage : maximum amount of water that can be

Bank full stage acts as a threshold for potential flooding, helping calibrate the model to accurately predict when overbank flows may occur, it reduces uncertainty in flood extent and timing predictions.

> Calculate river width at bankfull stage by identifying the location of river 's (active channel) boundary based on river cross section Add Lay Options

An accurate width calculation defines floodplain interactions, leading to better predictions of inundation areas and flood extent. It also impacts sediment movement and channel stability.

Tervuren Catchment: Preprocessing of Flood Model Data Input

HydroEurope

2 Case Study: Tervuren Catchment

Study Area of Tervuren, Belgium

- The study area of this project is Tervuren Municipality, Belgium
- A large area in Tervuren is at risk of urban fluvial and pluvial floods (HNL, 2023; Flemish Government, 2023)
- Climate change is expected to increase precipitation extreme which potentially exacerbate urban pluvial flooding in Tervuren

HydroEurope

3 Step by step tutorial

Simulate flood inundation in Tervuren with LISFLOOD require several data input and information. The input data required by LISFLOOD are as follows:

- 1. Digital elevation model file (.dem.asc)
- 2. Floodplain friction coefficient file (.n.asc)
- 3. Infiltration (set in parameter file (.par))
- 4. Spatially variable river bed elevation(.bed.asc)
- 5. Spatially variable river width (.width.asc)
- 6. Boundary condition file (.bci)
- 7. Time-varying boundary file (.bdy)
- 8. Rainfall (.rain)
- 9. Parameter file (.par)

This exercise is the first part of a series of exercises on preparing LISFLOOD input data. We will start the preprocessing with preparing digital elevation model file (.dem.asc), delineate stream network, and preparing floodplain friction coefficient file (.n.asc). The result of stream network delineation process will be used to define spatially variable river bed elevation(.bed.asc), spatially variable river width (.width.asc), as well as, the points on boundary condition file (.bci). Additionally, we will prepare spatially distributed floodplain infiltration and river geometry maps. Based on floodplain infiltration (hydraulic conductivity) map, average infiltration rate will be defined and set in parameter file (.par). Meanwhile, river bed elevation (.bed.asc) and river width (.width.asc), which are the river geometry parameters required by LISFLOOD, will be estimated based on finer resolution (1m) elevation model.

Prior to the preprocessing, PCRaster Tools and Profile Tool plugin need to be installed in QGIS. The installation of PCRaster Tools is explained in the following link: https://www.youtube.com/watch?v=2pEr5RoGAXc

3.1 Digital Elevation Model (DEM)

The first step of pre-processing is preparing the elevation model, which will be use as both model input, further step of river network delineation and river geometry estimation. To obtained 10 m resolution digital elevation data (.dem.asc) for the study case, the following steps should be followed:

Step 1: Load DTM and catchment boundary shapefile

First, load the high-resolution DTM (dem_1m.tif) and shapefile of catchment's boundary (tervuren_boundary.shp) that compose the basin area should be loaded.

Step 2: Reprojection

The next step is the reprojection of the merged DTM. Generally, the elevation model is available in a Geographic Reference System (GRS), and it must be reprojected using the **Warp function** to a Projected Reference System, EPSG: 31370 – BD72 / Belgian Lambert

HydroEurope

Complete the dialogue as follow and run the algorithm:

Parameters Log	
input layer	
Im [EPSG:26986]	▼
Source CRS [optional]	
EPSG:26986 - NAD83 / Massachusetts Mainland	▼ 🏀
Target CRS [optional]	
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72	▼ 🛞
Resampling method to use	
Nearest Neighbour	~
Nodata value for output bands [optional]	
-9999.000000	≪ \$
Output file resolution in target georeferenced units [optional]	
Not set	\$
Advanced Parameters	
Reprojected	
I:/01 IP/Week 2/dtm_10m.tif	
Open output file after running algorithm	
GDAL/OGR console call	
0%	Cance
Adverse die Deue en Debele Deueene	

Step 3: Clipping and Aggregation

UNIVERSITAT POLITÈCNICA DE CATALUNYA

The next step is to use **Clip Raster by Mask Layer** to clip the DTM file into desire area. The DTM extension must be extracted using the Clip Raster by Extent function (implementing the extension of the catchments shapefile).

In addition, it is also needed to aggregate the raster data from 1 to 10 m resolution by setting horizontal and vertical layer resolution to the desired resolution. Complete the dialogue as follow and run the algorithm:

Co-funded by the European Union

WARSAW UNIVERSITY OF TECHNOLOGY Newcastle University

CÔTE D'AZUR

8

Q Clip Raster by Mask Layer	×
Parameters Log	
Mask layer	
Tervuren_Adm_boundaries [EPSG:31370]	- 🗘 🛶
Selected features only	
Source CRS [optional]	
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72	- 🍖
Target CRS [optional]	
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72	- 🌚
Target extent [optional]	
Not set	
Assign a specified nodata value to output bands [optional]	
Not set	•
Create an output alpha band	
✔ Match the extent of the clipped raster to the extent of the mask layer	
Keep resolution of input raster	
Set output file resolution	
X Resolution to output bands [optional]	
Not set	•
Y Resolution to output bands [optional]	
Not set	
0%	Cancel
Advanced T Run as Batch Process	Run Close Help

Save file as *tervuren_10m.tif.* The result of this step will be used in the further steps of river network delineation.

Step 4: Convert/Translate

The final step is to Convert / Translate the DTM layer (.tif) into .ASC format (ideal format to be used in the flood model). In the **additional command-line parameter** put the following text: **-co force_cellsize=true**

Complete the dialogue as follow and run the algorithm:

🛃 Translate (Convert Format)	
Parameters Log	
nput layer	
# dtm_10m [EPSG:31370]	▼
verride the projection for the output file [optional]	
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72	▼
issign a specified nodata value to output bands [optional]	
Not set	\$
Copy all subdatasets of this file to individual output files	
Advanced Parameters	
Additional creation options [optional]	
Profile	•
Nama	
4	
Validate Help	
Cvalidate Help Additional command-line parameters [optional]	
Validate Help Additional command-line parameters [optional] -co force_cellsize=true	
Validate Help Additional command-line parameters [optional] -co force_cellsize=true Output data type Life_lower Life_to Turne	· · · · · · · · · · · · · · · · · · ·
Validate Help Additional command-line parameters [optional] co force_cellsize=true Output data type Use Input Layer Data Type	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Save file as tervuren_10m.dem.asc

3.2 **River Network Delineation**

To delineate the stream/ river network of each basin we will implement the DTM extent (.tif) obtained from the previous procedure. We use two different methodology for this procedure which are PCRaster Tool Puglin (GIS tool) and GRASS. The final product from PCRaster Tool is stream order (.tif), meanwhile, GRASS will produce the stream network (.shp).

Part I : PCRaster tool

Step 1: Convert

Once PCRaster is installed, use **Convert to PCRaster Format** and set the **Output data type: Scalar** to convert *tervuren_10m.tif* to *tervuren_10m.map*. Complete the dialogue and run the algorithm:

Q Convert to PCRaster Format	×
Parameters Log	Convert to
Raster layer	PCRaster Format
* tervuren_10m [EPSG:31370]	Convert GDAL supported raster
Output data type	control of the output data type
Scalar	
PCRaster layer	
[Save to temporary file]	
006	Cancel
Advanced Run as Batch Process	Run Close

HydroEurope

Step 2: Flow direction calculation

Next step is to calculate the Flow direction map, using the **Lddcreate** tool (Local drain direction map) – Use default settings.

Step 3: Derive Strahler Order

Once flow direction map (.map) is generated, use the **streamorder** tool to derive the streams Strahler order from the flow direction map generated from the previous step.

Step 4: Filter Strahler Order

Filter the lower-order streams from the previously generated strahler order map (.map) by keeping the last 3 river order and get the final river network *final_stream_order.tif* (.tif) file. This can be done by **Raster Calculator** and assigning 3 to maximum river order, 2 to "maximum river order -1", and 1 to "maximum river order -2". For instance, in this case, the strahler order is ranging from 1 to 11, therefore, only order 9, 10, 11 will be kept on the final map.

Command:

```
("name of the streamorder map" = 11) \star 3 + ( "name of the streamorder map= 10) \star 2 + ( "name of the streamorder map" = 9) \star 1
```

Step 5: Reproject Strahler Order

Finally, reproject *final_stream_order.tif* generated from the previous map, using the **Warp function** to a Projected Reference System, EPSG: 31370 – BD72 / Belgian Lambert. The result of PCRaster processes will be used to analyze delineated river in the further steps.

Part II : GRASS

Step 1: Depression-less Elevation and Flow Direction

To filter and generate depression-less elevation map and flow direction from *tervuren_10m.tif*, use **r.fill.dir.** Define **grass** for the **output aspect direction format**, complete the dialogue as follow and run the algorithm:

HydroEurope

Q r.fill.dir		×
Parameters Log	r.fill.dir	
Elevation	Filters and generates	s a
Fervuren_10m [EPS6:31370]	depressionless eleva a flow direction lave	ition layer and ir from a
Output aspect direction format [optional]	given elevation raste	er layer.
grass 👻	•	
▼ Advanced Parameters		
Find unresolved areas only		
GRASS GIS 7 region extent [optional]		
Not set	-	
GRASS GIS 7 region cellsize (leave 0 for default)		
0.00000	h.	
Output Rasters format options (createopt) [optional]		
Output Rasters format metadata options (metaopt) [optional]		
Depressionless DEM		
I:/01 IP/Week 2/tervuren_depressionless.tif		
✓ Open output file after running algorithm		
Flow direction		
Iz/01 IP/Week 2/tervuren_flow-direction-arass.tif		
0%		Cancel
Advanced 🔻 Run as Batch Process	Run Close	Help

Step 2: Stream Extraction

To extract river network use *tervuren_10m.tif*, use **r.stream.extract**. The **minimum flow accumulation for stream** should be considered **50000**. The **v.out.ogr** output type should be considered as **line**. Complete the dialogue as follow and run the algorithm:

Q r.stream.extract		×
Parameters Log		r.stream.extract
Input map: elevation map		Stream network extraction
tervuren_10m [EPSG:31370]	•	
Input map: accumulation map [optional]		
	▼ []	
Input map: map with real depressions [optional]		
	•	
Minimum flow accumulation for streams		
50000.000000		
Montgomery exponent for slope [optional]		
0.000000		
Delete stream segments shorter than cells [optional]		
0		
Use SFD above this threshold [optional]		
Not set	\$	
▼ Advanced Parameters		
Maximum memory to be used (in MB) [optional]		
300	¢ 🗈	
GRASS GIS 7 region extent [optional]		
Not set	12 -	
GRASS GIS 7 region cellsize (leave 0 for default)		
0.000000	*	
Output Rasters format options (createopt) [optional]		
0%		Cancel
Advanced T Run as Batch Process		Run Close Help

HydroEurope

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

WARSAW UNIVERSITY OF TECHNOLOGY Newcastle University

Parameters Log		r.strea	m.extract
	1	 Stream net 	work extraction
v.out.ogr output type			
line	•		
v.out.ogr output data source options (dsco) [optional]			
v.out.ogr output layer options (lco) [optional]			
Also export features without category (not labeled). Otherwise only features with category are exported			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional]			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Save to temporary file]			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Save to temporary file] Open output life after running algorithm			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Save to temporary file] Open output file after running algorithm ingue stream ids (ved) [optional]			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Open output file after running algorithm nique stream ids (rest) [optional] (01) PDWeck 2/tervuren_unique erram.shp			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Save to temporary file] Open output file after running algorithm nique stream ids (vect) [optional] :/01 IP/Week 2/tarvure_unique-stream.shp // Open output file after running algorithm	•. D		
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Open output file after running algorithm nique stream ids (vect) [optional] (701 IP/Week 2/tervuren_inique-stream.shp (70 Open output file after running algorithm ow direction [optional]			
Also export features without category (not labeled). Otherwise only features with category are exported inique stream ids (rast) [optional] Save to temporary file] (O pen output file after running algorithm inique stream ids (vect) [optional] (O II P/Week Z/tervure_unique-stream.shp (O on output file after running algorithm inique stream ids (vect) [optional] Save to temporary file]			
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Size to temporary file] Open output file after running algorithm nique stream ids (vect) [optional] //0.11 P/Week 2/tervuren_unique-stream.shp // Open output file after running algorithm ow direction [optional] Size to temporary file] Open output file after running algorithm ow direction [optional] Size to temporary file] Open output file after running algorithm		-	
Also export features without category (not labeled). Otherwise only features with category are exported nique stream ids (rast) [optional] Save to temporary file] Open output file after running algorithm ov direction [optional] Save to temporary file] Open output file after running algorithm		Ŧ	

The value of **minimum flow accumulation for stream** needs to be calibrated with the initial value used is 50000. Stream order map resulted from PCRaster method can be use in this calibration process. The resulted *tervuren_unique-stream.shp* will be use in defining river geometry and inflow points (boundary conditions).

3.3 Friction Map

To generate a distributed friction map (.tif) from a landuse map (.tif) the following steps must be carried out:

Step 1: Reclassify Land Use Map

Import the landuse map (tervuren_landcover_reprojected.tif) of the study-area and reclassify the landuse code map according to the International Geosphere-Biosphere Programme (IGBP) classification system using **Raster Calculator**.

Conversion of ESA WORLD LAND COVER CLASSES \rightarrow to IGBP CODE

- 10 Tree cover \rightarrow 5
- 20 Shrubland \rightarrow 7
- 30 Grassland \rightarrow 10
- 40 Cropland \rightarrow 12
- 50 Built-up \rightarrow 13
- 60 Bare / sparse vegetation \rightarrow 16
- 70 Snow and ice \rightarrow 15
- 80 Permanent water bodies \rightarrow 17

UNIVERSITAT POLITÈCNICA

AIB

VRIJE

- 90 Herbaceous wetland \rightarrow 11
- 95 Mangroves \rightarrow 11

Co-funded by the European Unior Tervuren Catchment: Preprocessing of Flood Model Data Input

WARSAW UNIVERSITY OF TECHNOLOGY 13

Command:

```
( "ESA_Landcover_Reprojected@1" = 10) * 5 + ( "ESA_Landcover_Reprojected@1" = 20) * 7 + (
"ESA_Landcover_Reprojected@1" = 30) * 10 + ( "ESA_Landcover_Reprojected@1" = 40) * 12 + (
"ESA_Landcover_Reprojected@1" = 50) * 13 + ( "ESA_Landcover_Reprojected@1" = 60) * 16 + (
"ESA_Landcover_Reprojected@1" = 70) * 15 + ( "ESA_Landcover_Reprojected@1" = 80) * 17 + (
"ESA_Landcover_Reprojected@1" = 90) * 11 + ( "ESA_Landcover_Reprojected@1" = 95) * 11
```

Step 2: Distributed Friction Map

Use **Raster Calculator** to generate a distributed friction map from reclassified land cover map generated from previous step. The calculation is carried out by assign Manning's roughness coefficient to each IGBP landuse class according table below:

Catagony	Cover	Interception of	apacity(mm)	Root	Manning's	Vegetated	Leaf area	index(-)
Category	Cover	Maximum	Minimum	depth(m)	Coefficient	fraction(%)	Maximum	Minimum
1	Evergreen Needleleaf Forest	2	0.5	1.0	0.40	80	60	50
2	Evergreen Broadleaf Forest	3	0.5	1.0	0.60	90	60	50
3	Deciduous Needleleaf Forest	2	0.5	1.0	0.40	80	60	10
4	Deciduous Broadleaf Forest	3	0.5	1.0	0.80	80	60	10
5	Mixed Forest	3	0.5	1.0	0.55	83	60	30
6	Closed Shrublands	3	0.5	0.8	0.40	80	60	10
7	Open Shrublands	2	0.5	0.8	0.40	80	60	10
8	Woody Savannah	3	0.5	1.0	0.50	80	60	8
9	Savannahs	2	0.5	0.8	0.40	80	60	5
10	Grasslands	2	0.5	0.8	0.30	80	20	5
11	Permanent Wetlands	1	0.2	0.5	0.50	80	60	5
12	Croplands	2	0.5	0.8	0.35	85	60	5
13	Urban and Built-Up	0	0.0	0.5	0.05	0	0	0
14	Cropland / Natural Vegetation	2	0.5	0.8	0.35	83	40	5
15	Snow and Ice	0	0.0	0.1	0.05	0	0	0
16	Barren or Sparsely Vegetation	1	0.2	0.5	0.10	5	20	5
17	Water Bodies	0	0.0	0.1	0.05	0	0	0

 Table 3.2. Default parameters characterizing land use classes

Obtained and Adapted from Dickinson et al. (1993), Lull (1964), Zinke (1967), Rowe (1983), Chow (1964), Haan (1982), Yen (1992) and Ferguson (1998).

Command :

```
("name of the reclassified map" = 5) * 0.55 + ("name of the reclassified map" = 7) * 0.4 + ("name of the reclassified map" = 10) * 0.3 + ("name of the reclassified map" = 11) * 0.5 + ("name of the reclassified map" = 12) * 0.35 + ("name of the reclassified map" = 13) * 0.05 + ("name of the reclassified map" = 15) * 0.05 + ("name of the reclassified map" = 15) * 0.05 + ("name of the reclassified map" = 17) * 0.05
```

Step 3: Clipping and Aggregation

As all input raster maps need to have the same resolution and dimension, clipping and downscaling (aggregate) should be carried out using **Clip Raster by Mask Layer.** Set target extend based on *tervuren_10m.dem.asc*, then set x resolution and y resolution to 10m. Complete the dialogue as follow and run the algorithm:

HydroEurope

```
Co-funded by
the European Union
```


Q Clip Raster by Mask Layer				\times
Parameters Log				
Input layer				
tervuren_10m.dem [EPSG:31370]			- 6	
Mask layer				
Contervuren, boundary [EPSG:31370]	-	යා අ		
Selected features only			~	
Source CRS [optional]				
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72			- 4	
Target CRS [optional]				
Project CRS: EPSG:31370 - BD72 / Belgian Lambert 72			- 4	
Target extent [optional]				
158264.7212,164482.0882,166068.7465,171310.2128 [EPSG:31370]		•23		-
Assign a specified nodata value to output bands [optional]				
-9999.000000				\$
Create an output alpha band				
✓ Match the extent of the dipped raster to the extent of the mask layer				
Keep resolution of input raster				
Set output file resolution				
X Resolution to output bands [optional]				
10.000000				\$
Y Resolution to output bands [optional]				
10.000000				\$
Advanced Parameters				
Use multithreaded warping implementation				-
0%			Ca	ncel
Advanced Run as Batch Process	Run O	lose	н	elp

Step 4: Convert/Translate

The final step is to Convert / Translate the tervuren_n layer (.tif) into .ASC format (ideal format to be used in the flood model). In the **additional command-line parameter** put the following text: **-co force_cellsize=true.** Save as tervuren.n.asc

3.4 Floodplain Infiltration

Calculated hydraulic conductivity by use of the value provided for each soil class (tervuren_soil.tif) in the hydraulic conductivity column [m/s] in the table below:

Code	Texture classes	Hydraulic conductivity (mm/h)	Hydraulic conductivity (m/s)		
1	Sand	208.80	0.000058		
2	Loamy sand	61.20	0.000017		
3	Sandy loam	25.92	0.0000072		
4	Silt loam	13.32	0.0000037		
5	Silt	6.84	0.0000019		
б	Loam	5.58	0.0000016		
7	Sandy clay loam	4.32	0.0000012		
8	Silt clay loam	2.30	0.00000064		
9	Clay loam	1.51	0.00000042		
10	Sandy clay	1.19	0.00000033		
11	Silt clay	0.90	0.00000025		
12	Clay	0.60	0.00000017		

Table R 2. Default n	aramotors	characterizing	soil	textural	classes

Source: Liu, 2004

Newcastle University

b-tu Brandenburge Technische U

Generate spatially distributed hydraulic conductivity (floodplain infiltration) map using **raster** calculator.

Command:

UNIVERSITAT POLITÈCNICA DE CATALUNYA

```
( "Rasterized@1" = 1)*0.000058+ ( "Rasterized@1" = 3)*0.0000072+ ( "Rasterized@1"
= 6)*0.000000155 + ( "Rasterized@1" = 12)*0.0000017
```

Co-funded by the European Union Tervuren Catchment: Preprocessing of Flood Model Data Input

WARSAW UNIVERSITY OF TECHNOLOGY

Adjust the command based on the available code number, then check STATISTICAL_MEAN of the generated raster file (check properties) and use it as infiltrationvalue in parameter file (.par).

3.5 River Geometry

a. <u>River Width</u> Step 1: Prepare Data Input

Load tervuren_1m.tif, tervuren_unique-stream.shp and tervuren_boundary.shp from previous week exercise, as well as, tervuren_zero.tif. Open the attribute table of tervuren_unique-stream.shp file and click on "edit", "new field" then add a name "width" and type "integer".

-				
Q tervuren_u	nique-stream —	Features 1	otal: 340, Filtered	: 340, Selected: 0
1 🛛 🖉 🖓 🖉	• • • • • •	8 🗏 🔽 🤇	s 🕇 🖬 🗞 🔎 🚺	5 16 X 🕮 😑 🔍 🗇
1.2 fid	₹ = E 1.2			New field (Ctrl+W)
fid		cat	stream_typ	network
	🔇 Add Field	d		×
	Name	width		
	Name	widdi		
	Comment			
	Туре	123 Integ	ger (32 bit)	•
	Provider type	integer		
	Length	10		\$
			OK Ca	ncel

Step 2: Plot Terrain Profile

River width will be calculated based on the terrain profile (elevation map) using **profile tool.** To begin with, click "terrain profile" in the vector toolbar then add tervuren_1m.tif layer (click tervuren_1m.tif on layer then click add layer in profile tool).

e ¥ 8₀ × 10 m Ω	S K	
∦ tervuren_1m ∰ data		
Profile Tool		
Profile Table Settings		
0.0004	0.00 ¢	Layer Band/Field
0.0002		
0 Y:/		Add Layer Remove Layer
-0.0002	minimum	Selection Temporary polyline
Ond O	0.0003 0.0004 0.00 \$	Show cursor Link mouse position on graph with canvas Same axis scale
Reset view Height	Graph - PNG Save as	Same axis scale

Plot terrain profile of river cross section by drawing a line perpendicular to the river (tervuren_unique-stream.shp), as depicted below:

HydroEurope

Tervuren Catchment: Preprocessing of Flood Model Data Input

b-tu Brand Techn 16

Step 3: Calculate River Width

Based on the terrain profile of river cross section, calculate river width at bankfull stage by identifying the location of river 's (active channel) boundary (point A and B for example) as depicted in the figures below:

Use Google Satellite as additional information to define the boundary of the river. Carried out this calculation at adequate number of samples for each river segment. The final river width of each segment should be the average river width from the samples.

Step 4: Rasterize River Width

Rasterize tervuren_unique-stream.shp using **rasterize**. Set field to use for burn-in value as "width", the vertical and horizontal resolution as 10 m, output extend based on previously generated raster input map and no data value as -9999.

Step 5: River Width Map Revision

UNIVERSITAT POLITÈCNICA DE CATALUNYA

HydroEurope

Co-funded by the European Unior Tervuren Catchment: Preprocessing of Flood Model Data Input

WARSAW UNIVERSITY OF TECHNOLOGY Newcastle University

As LISFLOOD require specific format of its input maps, previously generated river width map (.tif) need to be revised by merging the map with tervuren-zero.tif (raster map contains of 0 inside the model boundary and NULL outside model boundary) using **merge.** Pay attention to the order of input layers; tervuren-zero.tif need to be above the tervuren_initial-width.tif as follow:

Rerge	>
Parameters Log	
Input layers	
✔ tervuren_zero [EPSG:26986]	Select All
✓ tervuren_initial-width [EPSG:26919]	Clear Selection
	Toggle Selection
	Add File(s)
	Add Directory
	ОК
0%	Cancel
Advanced 💌 Run as Batch Process	Run Close Help

Complete the dialogue with default option and run the algorithm. Once the merging process finish, clip the resulted layer using the **Clip Raster by Extent** function. Use tervuren_boundary.shp as mask layer and assign no data value as -9999.

Step 6: Convert/Translate

The final step is to Convert / Translate the river width map from previous step (.tif) into .ASC format (ideal format to be used in the flood model). In the **additional command-line parameter** put the following text: **-co force_cellsize=true.** Save as tervuren.width.asc.

b. <u>Riverbed Elevation</u>

Step 1: Prepare Data Input

In addition to tervuren_1m.tif and tervuren_unique-stream.shp, prepare initial riverbed elevation raster map by duplicating previously generated initial river width (.tif) and rename as tervuren_bed.tif.

Step 2: Extract Vertice

Extract points (vertices) based on tervuren_unique-stream.shp using extract vertices function.

Vect <u>o</u> r	<u>R</u> aster	<u>D</u> atabase	<u>W</u> eb	<u>M</u> esh	Pro <u>c</u> essing <u>H</u> elp
🔶 Co	ordinate	Capture			🔁 🛛 🔍 🚟 🐺 Σ 🛅 🕶 🛶 🌄 🍥
<u>N</u> u	merical [Digitize		•	
<u>G</u> e	oprocess	sing Tools		Þ	
G <u>e</u>	ometry T	ools			👁 Centroids
<u>A</u> n	alysis Too	ols		Þ	霃 Collect Geometries
<u>R</u> e:	search To	ols		Þ	🔆 Densify by Count
Da	ta Manao	gement Too	s	•	*** Extract Vertices

Step 3: Sample Bed Elevation

Use **sample raster values** function for calculating the elevation of each point with the 1-m DTM (tervuren_1m.tif) and the point map (tervuren_vertices.shp) generated in the previous step should be used as an input. Complete the dialogue as follow and run the algorithm:

HydroEurope

Parameters Log				 Sample raster
Input layer				values
* * tervuren_vertice [EPSG:26986] Selected features only	•	C	Z,	 This algorithm creates a new vector layer with the same attributes of the input layer and the raster values corresponding
Raster layer				on the point location.
tervuren_1m [EPSG:26919]			•	 If the raster layer has more than
Output column prefix [optional]				sampled.
elevation				
Sampled				
I:/01 IP/Week 2/tervuren_elevation.shp				
✔ Open output file after running algorithm				
0%				Cancel
Advanced 💌 Run as Batch Process				Run Close Help

Step 4: Rasterize Bed Elevation

Rasterize riverbed elevation using **Rasterize (overwrite with attribute)** with sampled bed elevation (tervuren_elevation.shp) and initial riverbed (tervuren_bed.tif) as input vector and raster layers. Complete the dialogue as follow and run the algorithm:

Q Rasterize (Overwrite With Attribute)		>
Parameters Log		
Input vector layer		
* tervuren_elevation [EPSG:26986]	- C	; 🔧 🗔
Selected features only		
Input raster layer		
tervuren_bed [EPSG:26919]		•
Field to use for burn in value		
1.2 elevation1		•
Advanced Parameters		
Add burn in values to existing raster values		
Additional command-line parameters [optional]		
GDAL/OGR console call		•
0%		Cancel
Advanced 💌 Run as Batch Process	Run Clo	ose Help

Step 5: Convert/Translate

UNIVERSITAT POLITÈCNICA DE CATALUNYA

The final step is to Convert / Translate the riverbed elevation map from previous step (.tif) into .ASC format (ideal format to be used in the flood model). In the **additional command-line parameter** put the following text: **-co force_cellsize=true.** Save as tervuren.bed.asc.

HydroEurope

WARSAW UNIVERSITY OF TECHNOLOGY Newcastle University

b-tu Brandenbu Technische

