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Skawa Catchment: Data Analysis

Since this is the third report in a series, it should build on the previous two by focusing on
calibration and contaminant transport, while acknowledging the earlier work on conceptual model
development and sensitivity analysis. Here's a structured Table of Contents that maintains
continuity while keeping the focus on this stage of the study.

1. Introduction

1.1 Background and Context

The Upper Skawa Catchment, located in southern Poland, covers an area of approximately 240.4
km2. The Skawa River, a tributary of the Vistula, originates in the Western Carpathians.

The study initially focused on estimating groundwater recharge within the catchment. This
recharge was assessed using a formula that incorporates several factors influencing infiltration,
including the annual precipitation rate, coefficients related to geological formations, land use,
slope, and the depth of the water table. Precipitation data were collected from four stations
distributed across the catchment, while the infiltration coefficient was determined based on
geological maps. Land use was mapped using CORINE Land Cover data, and the slope coefficient
was obtained through the analysis of a Digital Elevation Model (DEM). These elements allowed for
the spatialization of recharge rates and laid the foundation for groundwater flow modeling.

A conceptual model was then developed to represent the hydrogeological framework of the
catchment. It is based on the assumption of a single unconfined aquifer, delineated by the
topography and the aquifer base, with impermeable boundaries corresponding to the catchment
limits. Recharge areas were identified based on infiltration analyses, and
surface-water/groundwater interactions were accounted for using the River Package (RIV) and
Drain Package (DRN) modules of MODFLOW. Numerical modeling was conducted using
MODFLOW-2005 with a finite-difference approach and a 100 m x 100 m grid. Key hydrogeological
parameters were defined, and their sensitivity within the model was analyzed, with hydraulic
conductivity ranging from 5 to 20 m/day, an infiltration coefficient (alpha) between 0.05 and 0.50,
and conductance values ranging from 1 m%day to 1000 m?%day.

To ensure model accuracy, a calibration phase was carried out by comparing observed and
simulated groundwater levels. This step included a sensitivity analysis to identify the most
influential parameters, as mentioned earlier, along with iterative adjustments to minimize
discrepancies between simulated and measured data. These adjustments were made using data
from piezometers and groundwater table contours.
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Skawa Catchment: Data Analysis

1.2 Objectives of This Report

The objectives of this report are to ensure an accurate calibration of the numerical model in order
to reliably simulate groundwater flow and contaminant transport in the Skawa basin. The first step
is to adjust the hydrogeological parameters, including conductance, hydraulic conductivity, and
recharge rates, based on piezometer data. A sensitivity analysis is conducted to identify the
parameters most influential on the dynamics of subsurface flow and to enhance the robustness of
the model.

One of the key objectives is to initiate and parameterize contaminant transport using MT3DMS,
incorporating processes of advection, diffusion, and dispersion. Several simulations are carried out
to analyze the effects of variations in porosity, longitudinal and transverse dispersivity, as well as
spatial and temporal discretization, in order to assess their impact on pollutant migration. The goal
is to identify the most vulnerable areas to contamination and to understand the influence of
injection on the dispersion of pollutants.

Finally, the report aims to analyze the results by comparing them with the expected behavior from
the sensitivity analysis, identifying the main sources of uncertainty, and providing
recommendations to improve the accuracy of the simulations.

2. Model Calibration

2.1 Numerical Model

e Grid Resolution and DEM-Based Representation

The first step to modelize the Skawa catchment is to create a grid on Modelmuse. The cell size
chosen is the same as the one that was used for the processing of the data with GIS, that is to say,
a cell size of 100m x 100m. The outline of the grid is defined by the outline of the catchment which
was added to Modelmuse as a shapefile.
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Skawa Catchment: Data Analysis

e Layer Structure and Aquifer Thickness

After creating the grid, we have to add the bottom and the top of the aquifer. The representation
of these layers on QGIS are the following figures :

Bottom layer of aquifer Top layer of the aquifer

A A

Legend = Legend

Skawa_bottom T Skawa_top
Bande 1 (Gray) | Bande 1 (Gray)
766,87455 0 1712
215,04558 274

After importing these layers, we obtain the thickness of the aquifer at each cell.
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2.2 Overview of Sensitivity Analysis

We change the value of the parameters to estimate the impact of this parameter on the results on
the modelisation. That is to say the influence of the parameters on the water table contour.

Hydraulic conductivity :
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K=0.5m/d

Co-funded by UNIVERSITAT POLITECNICA VRIJE
i DE CATALUNYA UNIVERSITEIT
the European Union BARCELONATEGH BRUSSEL

AW 2s=INewcastle Brandenburgische 2 lee
bbb University beby i LCJCT,\ITI\é%FEEE vel:
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K=20m/d

Infiltration coefficient alpha :
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a=0.05

N Newcastle Brandenburgische 2 lee
@) 5’;‘&5&"%‘{'&"5“”“ University b.tu E.;hmschau.mrsf;r LCJSJ'I[\E/%E\ASZ'E]—E . .‘?..

:
W UNIVERSITAT POLITECNICA VRIJE
Co-fundedby DE CATALUNYA UNIVERSITEIT
the European Union BARCELONATEGH  |eilded EBRUSSEL
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Conductance :

C=1mid

C =1000 m?/d
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Analysis of the result
2.3 Calibration Process in ModelMuse

o Conductance

Map of the conductance

Rivers Conductance

— 130

. —185

500

. — 1000

— 1400

. 1 Upper_Skawa_catchment

Rivers Conductance BC (mzfs) Rivers Conductance AC (mzfs)
1000 185
1000 1400
1000 1000
1000 500
1000 130

o Hydraulic Conductivity
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Skawa Catchment: Data Analysis

Map of the piezometers and the hydraulic conductivity
2 é’\é& T e~ (" ‘, 2 .

e Piezometers

~ Hydraulic conductivity
. [IKO

. I Upper_Skawa_catchment

With KO =5 m/d, K1 =10 m/d, K2 =15 m/d, K3 =0.5 m/d, K4 =16 m/d and K5 =1 m/d

2.4 Analysis and Interpretation of Results

Legen
— Calibrated water table

- — Observed water table
.. @3 Upper_Skawa_catchment |
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Calibration of the piezometers

650

600

y=1.0013x-0.6779 -

550 | T T T e e e e e -

500 e g

Simulated Value AC

450 o

400 '

350
350 400 450 500 550 600 650

Observed Values

Observation Name | Observed Value | Simulated Value AC | Residual {Observation/simulation)
Fl 38579 396.09 -0.30
P2 39639 396.35 0.04
F3 411.07 410.50 0.17
P4 431.35 431.08 027
P5 431.28 431.08 0.21
P& 44732 44728 0.04
F7 452.96 452.82 0.14
FE 611.06 611.05 0.01
F2 476.64 47587 0.e7

P10 4559.593 455.59 -0.06
P11 535.72 536.19 -0.47
P12 616.55 616.54 0.01
P13 500.23 499.52 0.71
P14 573.80 57448 -0.68
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3. Contaminant Transport Simulation

3.1 Process Description

g ;
.y r e ' "
Contamination source

Unsaturated/ _ Volatilization

Advection: Transport of contaminants with groundwater flow, at a velocity equal to that of the
fluid in the pores. (Ex: A pollutant moves with the water flow without spreading.)

S adw = C'Vp

Diffusion: Molecular movement of contaminants driven by concentration gradients, even in
stagnant water. (Ex: A contaminant slowly spreads in a stagnant zone.)

J:iyf = —D;gf"ad(c)

Dispersion: Spreading of contaminants due to local velocity variations, combining mechanical
dispersion and diffusion. (Ex: A pollution plume widens as it moves through an aquifer.)

J s =—D, grad(C)

Total flux of mass in groundwater :
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J :JadW+def+desp

J=nCv,—-nD,grad(C)

3.2 Introduction of Contaminant to the Catchment

The introduction of the contaminant into the Upper Skawa catchment occurs when the buried barrels
containing chemicals begin to leak, releasing sulphate ions (SO.*) into the groundwater. The site of
contamination is located approximately 10 meters below the surface in the central part of the catchment.
As the sulphate ions are highly soluble in water, they can easily migrate through the groundwater and travel
toward the Skawa River.

Upon leakage, the initial concentration of sulphate at the source is 12,000 mg/L, which is significantly higher
than the natural background concentration of 10 mg/L. This sharp difference in concentration creates a
gradient that drives the movement of the contaminant through the groundwater system. The contaminant
will spread through the catchment due to a combination of advection (the movement of water carrying the
contaminant) and dispersion (the spreading of the contaminant in different directions).

3.3 Selection of Contaminant and Source Location

For this study, sulphate ions (S04¥") have been selected as the contaminant of interest due to their high
solubility and ability to easily migrate through groundwater. This makes them ideal for tracking the spread
of contamination, especially in a scenario where chemicals may leak from buried barrels into the
groundwater. The source of contamination is assumed to be located at the site of the buried barrels, which
are approximately 10 meters below the surface. This site is central to the Upper Skawa catchment, and the
contamination could potentially reach the Skawa River if the leak occurs.

3.4 Parameterisation of Transport Model in MT3DMS

The transport model for this study will be implemented using MT3DMS, a widely used numerical model for
simulating the transport of solutes in groundwater. The key parameters to be included in the model are:

e Background concentration of sulphate: 10 mg/L, which represents the natural concentration of
sulphate ions in the groundwater before contamination.

e Source concentration of sulphate: 12,000 mg/L, which is the concentration of sulphate ions at the
contamination source (buried barrels).

e Longitudinal dispersion coefficient (D_disp): 25 meters, representing the spreading of the
contaminant along the flow path.

e Transverse dispersivity coefficients: 10% of D_disp, representing the spreading of the contaminant
in the horizontal and vertical directions perpendicular to the flow path.

o Advection: The primary transport mechanism considered in the model, using the standard finite
difference method for the advection solution scheme.
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The transport model assumes that diffusion can be neglected, as it is a slower process compared to
advection, and is less significant in the context of highly soluble contaminants like sulphate. Additionally,
processes such as sorption, retardation, degradation, and chemical reactions are considered negligible and
will not be included in the calculations, simplifying the model and focusing solely on the advection and
dispersion of the contaminant.

Results and analysis of contaminant transport simulation model
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Observation 2
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A coarser discretization (100x100) tends to cause a more significant numerical diffusion
phenomenon. This means that the contaminant concentration peak is more spread out, and its
arrival time at a given observation point is artificially delayed. This phenomenon is due to the
numerical method used in the modeling, where large cells lead to an interpolation of
concentration gradients.

In contrast, with a finer mesh (50x50), numerical diffusion is reduced, allowing for greater accuracy
in capturing contamination fronts. The contaminant's progression is closer to physical reality, with
sharper concentration gradients.

Using a more detailed mesh better represents the dispersion and advection of contaminants in the
aquifer. In the case of the 50x50 mesh, the transport follows more realistic pathways, whereas in
the 100x100 mesh, there is an overestimation of dilution due to poor spatial resolution. This
directly impacts the assessment of groundwater and surface water pollution risks.

A finer discretization leads to a more accurate calculation of contaminant transport time. In the
100x100 mesh, the concentration peak arrives later at observation points compared to the 50x50
mesh. This is due to the inability of the coarser mesh to correctly capture groundwater flow
dynamics and local permeability variations.

The drawback of a finer mesh is the increased computation time and required computational
resources. A coarser mesh allows for faster simulation but at the cost of reduced accuracy,
particularly in representing hydrodynamic flows and contaminant transport.

Différence between : excavation, no excavation and P&T

Observation no excavation
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Pumping started on day 180 and can stop on day 720, as the concentration drops below the
standard threshold of 250 mg/L by that time.

1. "No Excavation" Scenario

In this case, contaminants from the buried barrels spread freely through the aquifer via advection
and dispersion. The results show:
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Skawa Catchment: Data Analysis

e A persistent high concentration of sulfate around the pollution source.

® The contaminant plume progressing toward the Skawa River over several hundred days.

® Aslow decrease in concentrations due to natural dispersion, but without a significant
reduction in environmental risk.

This scenario highlights the lack of effective pollution containment and underscores the need for
intervention.

2. "Excavation" Scenario

Excavation involves removing the solid contamination sources (the barrels) to stop the continuous
release of pollutants into the aquifer. The observed effects include:

e Arapid decrease in sulfate concentrations after the pollution sources are removed.

e Areduction in the contaminant plume, though with persistence of already-diffused
pollutants.

e Stabilization of concentrations since there is no longer a continuous sulfate supply.

While this method is effective in stopping contamination at its source, it does not completely
eliminate pollutants already dispersed in the aquifer.

3. "Excavation + Pump & Treat (P&T)" Scenario

Pump & Treat (P&T) is an active remediation method where contaminated water is pumped,
treated, and either reinjected or discharged. In this scenario, excavation is complemented by
strategic pumping, resulting in:

® An accelerated reduction in sulfate concentrations as contaminated water is actively
extracted.

e A shorter remediation time, with concentrations dropping below the 250 mg/L threshold
within 720 days.

e A decrease in pollutant flux toward the river, minimizing environmental impact.

Conclusion
Scenario Residual Contaminants Remediation Time Technical Complexity Effectiveness
Without Excavation High Very Long Low Low
Excavation Only Medium Moderate Medium Moderate
Excavation + P&T Low Short High High

e Excavation alone reduces pollution but does not completely eliminate it.

¥ UNIVERSITAT POLITECNICA VRI O RS randenburgische = e
Co-funded by i DE CATALUNYA Lﬁj‘luffé&ﬂm e«.?%%a WARSAW UNIVERSITY ﬁg‘lﬂ",gla.gltge b‘tu ii%@!:eﬂif.:; tat UN ‘ VERS|TE ce@e-
the European Union BARGELONATECH BRUSSEL & OF TECHNOLOGY + y t " COTED'AZUR "=
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e Adding Pump & Treat is necessary to accelerate decontamination.
e \Without intervention, pollution persists in the long term.

Difference between : Porosity, longitudinal dispersivity, transversal

dispersivity
Porosity |Longitudinal Dispersivity |Transversal Dispersivity
0.05 1 0.1
10 1
100 10
0.1 1 0.1
10 1
100 10
0.15 1 0.1
10 1
100 10
0.2 1 0.1
10 1
100 10
0.25 1 0.1
10 1
100 10
365 days

n=0.15 DL=1 DT=0.1 t= 365 days n=0.20 DL=1 DT=0.1 t= 365 days

n=0.30 DL=1 DT=0.1 t= 365 days
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n=0.15DL=10 DT=1 t= 365 days n=0.20 DL=10 DT=1 t= 365 days

&5

n=0.30 DL=10 DT=1 t= 365 days

n=0.15 DL=100 DT=10 t= 365 days n=0.20 DL=100 DT=10 t= 365 days

n=0.25 DL=100 '|'=1 0 t= 365 days n=0.30 DL=100 DT=10 t= 365 days

3650 Days
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n=0.15DL=1 DT=0.1 n=0.20 DL=1 DT=0.1

n=0.25 DL=1DT=0.1 n=0.30 DL=1 DT=0.1

n=0.15DL=10 DT=1 n=0.20 DL=10 DT=1
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Pollutant concentrationvs. time
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Pollutant concentrationvs. time
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Pollutant concentrationvs. time
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Pollutant concentrationvs. time
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Pollutant concentrationvs. time
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Pollutant concentrationvs. time
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1. Porosity

Effective porosity directly influences the migration speed of contaminants. Higher porosity implies
a greater water storage capacity but a lower flow velocity, as the flow is distributed over a larger
water volume. The results show:

® Lower porosity accelerates contaminant migration since water flows more quickly through
the reduced interstitial spaces.

e Higher porosity slows down pollutant progression, increasing their residence time in the
aquifer.

In the modeling, porosity was adjusted to evaluate its influence on sulfate propagation in the
aquifer.

2. Longitudinal Dispersivity

Longitudinal dispersivity represents the dispersion of contaminants in the direction of the main
groundwater flow. The higher this value:

e The more the contaminant plume spreads along the flow direction.

e The faster the maximum concentration decreases, as dispersion promotes pollutant
dilution.

e Excessive spreading may, however, overestimate dispersion and fail to reflect field
observations.

The value used in the simulation is 25 m, which is consistent with large-scale aquifer environments.

3. Transverse Dispersivity

Transverse dispersivity measures the spreading of contaminants perpendicular to the main flow
direction. It is generally much lower than longitudinal dispersivity (often a 1:10 ratio). In the
model:

e Higher transverse dispersivity broadens the affected pollution zone, increasing the risk of
lateral contamination of adjacent aquifers.

e Lower dispersivity keeps the plume more confined, concentrating pollutants in a specific
area.

In this study, transverse dispersivity is set at 10% of longitudinal dispersivity, or 2.5 m.
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Parameter Main Effect Consequences

Porosity Regulates flow velocity Low porosity = fast transport, High porosity

= increased storage

Longitudinal Dilution and spreading of the pollutant Affects dispersion and peak concentration
Dispersivity along the flow direction

Transverse Lateral expansion of the plume Impacts diffusion into adjacent areas
Dispersivity

4. Uncertainty and Model Limitations

ModelMuse is a useful tool for groundwater modelling, but several uncertainties and limitations
must be considered when interpreting results.

A primary source of uncertainty is the quality of input data. Hydraulic conductivity, recharge rates,
and boundary conditions often vary spatially, yet model inputs are typically based on limited
measurements or generalised estimates. Simplifications in the conceptual model, such as assuming
uniform geology or treating drains as dry, can also introduce errors by omitting small-scale
variations in subsurface conditions.

Numerical discretisation presents another limitation. The model domain is divided into a
structured grid, and grid resolution affects accuracy. A coarse grid may fail to capture local flow
dynamics, while a fine grid increases computational demands and may lead to numerical
instability.

The assumption of steady-state flow further limits the model’s applicability. It does not account for
seasonal or short-term fluctuations in groundwater levels, which may influence recharge
estimates. Additionally, boundary conditions, such as constant head values or river conductance,
are often simplified representations that may not fully reflect real-world interactions between
groundwater and surface water.

Finally, calibration and validation introduce further uncertainty. Multiple parameter sets can
produce similar results, making the process non-unique. If field data for validation are insufficient,
model predictions may not be fully reliable for long-term analysis.

Conclusions and Recommendations

Effective porosity directly influences the migration speed of contaminants. A higher porosity
means a greater water storage capacity but a lower flow velocity, as the flow is distributed over a
larger volume of water. The results indicate that lower porosity accelerates contaminant migration
since water moves more quickly through the reduced interstitial spaces. Conversely, higher
porosity slows down pollutant progression, increasing their residence time in the aquifer. In the
modeling process, porosity was adjusted to assess its impact on sulfate propagation within the
aquifer.
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Longitudinal dispersivity represents the dispersion of contaminants in the direction of the main
groundwater flow. A higher value results in a more extended contaminant plume along the flow
path and a faster decrease in maximum concentration, as dispersion facilitates pollutant dilution.
However, excessive spreading may overestimate dispersion and fail to accurately reflect field
observations. In this study, a longitudinal dispersivity value of 25 meters was used, which aligns
with large-scale aquifer environments.

Transverse dispersivity, on the other hand, measures the spreading of contaminants perpendicular
to the primary flow direction. It is generally much lower than longitudinal dispersivity, often
following a 1:10 ratio. In the model, a higher transverse dispersivity led to a wider affected
pollution zone, increasing the risk of lateral contamination in adjacent aquifers. Meanwhile, lower
dispersivity helped confine the plume, concentrating pollutants within a more localized area. For
this study, transverse dispersivity was set at 10% of the longitudinal dispersivity, equivalent to 2.5
meters.

Recommendations for Future Work and Model Refinements

Improving the model relies on integrating more precise field data, including in situ measurements
of sulfate concentrations and piezometric levels. A better characterization of hydraulic conductivity
would also help refine calibration and reduce uncertainties.

It would be useful to test additional hypotheses by incorporating processes such as molecular
diffusion, biodegradation, and sorption. These mechanisms influence the migration and
persistence of contaminants and could improve the accuracy of model predictions.

Optimizing remediation solutions is essential to minimize environmental impact. Adjusting the
Pump & Treat pumping network, exploring the use of permeable reactive barriers, or testing in situ
treatments could accelerate decontamination while reducing costs and water consumption.

Numerical adjustments, such as refining the mesh and optimizing the time step, would enhance
simulation accuracy. Limiting numerical diffusion would provide a better representation of
contamination fronts and a more accurate risk assessment.

Finally, a long-term approach is necessary to anticipate pollution evolution. Assessing the impact of
climate change, artificial recharge, and long-term simulations over several decades would help
ensure sustainable water resource management and prevent potential future contamination.
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Results
https://docs.google.com/spreadsheets/d/1e4UAXUeB3KtLO8tSRZwoto8rhturs553/edit?usp=sharin
g&ouid=116524212352110548310&rtpof=true&sd=true

https://docs.google.com/spreadsheets/d/1NtOuUBn4R54ZmaClrccNpwmbBObEOrg_/edit?usp=sha
ring&ouid=116561909395589208677&rtpof=true&sd=true

https://kuleuven-my.sharepoint.com/:x:/r/personal/ferdinan_sunarga_student_kuleuven_be/Docu
ments/Conc_obs.xlsx?d=wf086cdeff3a84386bdefe128747dbd5b&csf=1&web=18&e=v9fRb8
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https://docs.google.com/spreadsheets/d/1e4UAXUeB3KtLQ8tSRZwoto8rhturs553/edit?usp=sharing&ouid=116524212352110548310&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1e4UAXUeB3KtLQ8tSRZwoto8rhturs553/edit?usp=sharing&ouid=116524212352110548310&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1Nt0uUBn4R54ZmaCIrccNpwmbB0bEOrq_/edit?usp=sharing&ouid=116561909395589208677&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1Nt0uUBn4R54ZmaCIrccNpwmbB0bEOrq_/edit?usp=sharing&ouid=116561909395589208677&rtpof=true&sd=true
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